In this paper, multivariate time series models were built to predict the power ramp rates of a wind farm. The power changes were predicted at 10 min intervals. Multivariate time series models were built with data-mining algorithms. Five different data-mining algorithms were tested using data collected at a wind farm. The support vector machine regression algorithm performed best out of the five algorithms studied in this research. It provided predictions of the power ramp rate for a time horizon of 10–60 min. The boosting tree algorithm selects parameters for enhancement of the prediction accuracy of the power ramp rate. The data used in this research originated at a wind farm of 100 turbines. The test results of multivariate time series models were presented in this paper. Suggestions for future research were provided.

1.
David
,
A. S.
, 1994,
Wind Turbine Technology: Fundamental Concepts of Wind Turbine Engineering
,
ASME
,
New York
, p.
638
.
2.
Svoboda
,
A. J.
,
Tseng
,
C.
,
Li
,
C.
, and
Johnson
,
R. B.
, 1997, “
Short-Term Resource Scheduling With Ramp Constraints
,”
IEEE Trans. Power Syst.
0885-8950,
12
(
1
), pp.
77
83
.
3.
Ummels
,
B. C.
,
Gibescu
,
M.
,
Pelgrum
,
E.
,
Kling
,
W. L.
, and
Brand
,
A. J.
, 2007, “
Impacts of Wind Power on Thermal Generation Unit Commitment and Dispatch
,”
IEEE Trans. Energy Convers.
0885-8969,
22
(
1
), pp.
44
51
.
4.
Potter
,
C. W.
, and
Negnevitsky
,
M.
, 2006, “
Very Short-Term Wind Forecasting for Tasmanian Power Generation
,”
IEEE Trans. Power Syst.
0885-8950,
21
(
2
), pp.
965
972
.
5.
Torres
,
J. L.
,
Garcia
,
A.
,
De Blas
,
M.
, and
De Francisco
,
A.
, 2005, “
Forecast of Hourly Average Wind Speed With ARMA Models in Spain
,”
Sol. Energy
0038-092X,
79
(
1
), pp.
65
77
.
6.
Sfetsos
,
A.
, 2002, “
A Novel Approach for the Forecasting of the Mean Hourly Wind Speed Time Series
,”
Renewable Energy
0960-1481,
27
(
2
), pp.
163
174
.
7.
Lange
,
M.
, and
Focken
,
U.
, 2006,
Physical Approach to Short-Term Wind Power Prediction
,
Springer-Verlag
,
Berlin
, p.
208
.
8.
Barbounis
,
T. G.
,
Theocharis
,
J. B.
,
Alexiadis
,
M. C.
, and
Dokopoulos
,
P. S.
, 2006, “
Long-Term Wind Speed and Power Forecasting Using Local Recurrent Neural Network Models
,”
IEEE Trans. Energ. Convers.
,
21
(
1
), pp.
273
284
. 0885-8969
9.
Kusiak
,
A.
, and
Song
,
Z.
, 2006, “
Combustion Efficiency Optimization and Virtual Testing: A Data-Mining Approach
,”
IEEE Trans. Ind. Informat.
,
2
(
3
), pp.
176
184
.
10.
Kusiak
,
A.
, 2006, “
Data Mining: Manufacturing and Service Applications
,”
Int. J. Prod. Res.
0020-7543,
44
(
18–19
), pp.
4175
4191
.
11.
Berry
,
M. J. A.
, and
Linoff
,
G. S.
, 2004,
Data Mining Techniques: For Marketing, Sales, and Customer Relationship Management
,
2nd ed.
,
Wiley
,
New York
.
12.
Backus
,
P.
,
Janakiram
,
M.
,
Mowzoon
,
S.
,
Runger
,
G. C.
, and
Bhargava
,
A.
, 2006, “
Factory Cycle-Time Prediction With Data-Mining Approach
,”
IEEE Trans. Semicond. Manuf.
0894-6507,
19
(
2
), pp.
252
258
.
13.
Tan
,
P. N.
,
Steinbach
,
M.
, and
Kumar
,
V.
, 2006,
Introduction to Data Mining
,
Pearson/Addison Wesley
,
Boston, MA
.
14.
Kusiak
,
A.
,
Zheng
,
H.
, and
Song
,
Z.
, 2009, “
Wind Farm Power Prediction: A Data Mining Approach
,”
Wind Energy
1095-4244,
12
(
3
), pp.
275
293
.
15.
Box
,
J. E. P.
, and
Jenkins
,
G. M.
, 1976,
Time Series Analysis Forecasting and Control
,
Holden-Day
,
San Francisco, CA
.
16.
Brown
,
B. G.
,
Katz
,
R. W.
, and
Murphy
,
A. H.
, 1984, “
Time Series Prediction Model to Simulate and Forecast Wind Speed and Wind Power
,”
J. Clim. Appl. Meteorol.
0733-3021,
23
(
8
), pp.
1184
1195
.
17.
Friedman
,
J. H.
, 2002, “
Stochastic Gradient Boosting
,”
Comput. Stat. Data Anal.
0167-9473,
38
(
4
), pp.
367
378
.
18.
Friedman
,
J. H.
, 2001, “
Greedy Function Approximation: A Gradient Boosting Machine
,”
Ann. Stat.
0090-5364,
29
(
5
), pp.
1189
1232
.
19.
Witten
,
I. H.
, and
Frank
,
E.
, 2005,
Data Mining: Practical Machine Learning Tools and Techniques
,
2nd ed.
,
Morgan Kaufmann
,
San Francisco, CA
.
20.
Kohavi
,
R.
, and
John
,
G. H.
, 1997, “
Wrappers for Feature Subset Selection
,”
Artif. Intell.
0004-3702,
97
(
1–2
), pp.
273
324
.
21.
Espinosa
,
J.
,
Vandewalle
,
J.
, and
Wertz
,
V.
, 2005,
Fuzzy Logic, Identification and Predictive Control
,
Springer-Verlag
,
London, UK
.
23.
Bishop
,
C. M.
, 1995,
Neural Networks for Pattern Recognition
,
Oxford University
,
New York
.
24.
Seidel
,
P.
,
Seidel
,
A.
, and
Herbarth
,
O.
, 2007, “
Multilayer Perceptron Tumor Diagnosis Based on Chromatography Analysis of Urinary Nucleoside
,”
Neural Networks
0893-6080,
20
(
5
), pp.
646
651
.
25.
Smola
,
A. J.
, and
Schoelkopf
,
B.
, 2004, “
A Tutorial on Support Vector Regression
,”
Stat. Comput.
0960-3174,
14
(
3
), pp.
199
222
.
26.
Cristianini
,
N.
, and
Shawe-Taylor
,
J.
, 2000,
An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods
,
Cambridge University
,
New York
, p.
189
.
27.
Prasad
,
A. M.
,
Iverson
,
L. R.
, and
Liaw
,
A.
, 2006, “
Newer Classification and Regression Tree Techniques: Bagging and Random Forests for Ecological Prediction
,”
Ecosystems
1432-9840,
9
(
2
), pp.
181
189
.
28.
Breiman
,
L.
, 2001, “
Random Forest
,”
Mach. Learn.
0885-6125,
45
(
1
), pp.
5
32
.
29.
Breiman
,
L.
,
Friedman
,
J.
,
Olshen
,
R. A.
, and
Stone
,
C. J.
, 1984,
Classification and Regression Trees
,
Wadsworth International
,
Monterey, CA
.
30.
Wang
,
Y.
, and
Witten
,
I. H.
, 2002, “
Modeling for Optimal Probability Prediction
,”
Proceedings of the 19th International Conference in Machine Learning
, Sydney, Australia, pp.
650
657
.
You do not currently have access to this content.