This paper demonstrates the potential of a compressible Navier–Stokes CFD method for the analysis of horizontal axis wind turbines. The method was first validated against experimental data of the NREL/NASA-Ames Phase VI (Hand, et al., 2001, “Unsteady Aerodynamics Experiment Phase, VI: Wind Tunnel Test Configurations and Available Data Campaigns,” NREL, Technical Report No. TP-500-29955) wind-tunnel campaign at 7 m/s, 10 m/s, and 20 m/s freestreams for a nonyawed isolated rotor. Comparisons are shown for the surface pressure distributions at several stations along the blades as well as for the integrated thrust and torque values. In addition, a comparison between measurements and CFD results is shown for the local flow angle at several stations ahead of the wind turbine blades. For attached and moderately stalled flow conditions the thrust and torque predictions are fair, though improvements in the stalled flow regime are necessary to avoid overprediction of torque. Subsequently, the wind-tunnel wall effects on the blade aerodynamics, as well as the blade/tower interaction, were investigated. The selected case corresponded to 7 m/s up-wind wind turbine at 0 deg of yaw angle and a rotational speed of 72 rpm. The obtained results suggest that the present method can cope well with the flows encountered around wind turbines providing useful results for their aerodynamic performance and revealing flow details near and off the blades and tower.

1.
Vermeer
,
L. J.
,
Sørensen
,
J. N.
, and
Crespo
,
A.
, 2003, “
Wind Turbine Wake Aerodynamics
,”
Prog. Aerosp. Sci.
0376-0421,
39
(
6–7
), pp.
467
510
.
2.
Hand
,
M. M.
,
Simms
,
D. A.
,
Fingersh
,
L. J.
,
Jager
,
D. W.
,
Cotrell
,
J. R.
,
Schreck
,
S.
, and
Larwood
,
S. M.
, 2001, “
Unsteady Aerodynamics Experiment Phase, VI: Wind Tunnel Test Configurations and Available Data Campaigns
,” NREL, Technical Report No. TP-500-29955.
3.
Schmitz
,
S.
, and
Chattot
,
J. -J.
, 2005, “
A Parallelized Coupled Navier-Stokes/Vortex-Panel Solver
,”
ASME J. Sol. Energy Eng.
0199-6231,
127
(
4
), pp.
475
487
.
4.
Sørensen
,
N. N.
,
Michelsen
,
J. A.
, and
Schreck
,
S.
, 2002, “
Navier-Stokes Predictions of the NREL Phase VI Rotor in the NASA Ames 80 ft×120 ft Wind Tunnel
,”
Wind Energy
1095-4244,
5
(
2–3
), pp.
151
169
.
5.
Duque
,
E. P. N.
,
Burklund
,
M. D.
, and
Johnson
,
W.
, 2003, “
Navier-Stokes and Comprehensive Analysis Performance Predictions of the NREL Phase VI Experiment
,”
ASME J. Sol. Energy Eng.
0199-6231,
125
(
4
), pp.
457
467
.
6.
Somers
,
D. M.
, 1997, “
Design and Experimental Results for the S809 Airfoil
,” NREL, Technical Report No. SR-440-6918.
7.
Snel
,
H.
,
Schepers
,
J. G.
, and
Montgomerie
,
B.
, 2007, “
The MEXICO Project (Model Experiments in Controlled Conditions): The Database and First Results of Data Processing and Interpretation
,”
The Science of Making Torque From Wind
,
Technical University of Denmark
,
Lyngby, Denmark
.
8.
Gómez-Iradi
,
S.
, and
Barakos
,
G.
, 2008, “
Computational Fluid Dynamics Investigation of Some Wind Turbine Rotor Design Parameters
,”
Proc. Inst. Mech. Eng., Part A
0957-6509: Journal of Power and Energy,
222
(
5
),
455
470
.
9.
Michelsen
,
J. A.
, 1992, “
Basis3D—A Platform for Development of Multiblock PDE Solvers
,” Technical University of Denmark, Technical Report No. AFM 92-05.
10.
Michelsen
,
J. A.
, 1994, “
Block Structured Multigrid Solution of 2D and 3D Elliptic PDEs
,” Technical University of Denmark, Technical Report No. AFM 94-06.
11.
Sørensen
,
N. N.
, 1995, “
General Purpose Flow Solver Applied to Flow Over Hills
,” Risø, Technical Report No. AFM 94-06.
12.
Le Pape
,
A.
, and
Lecanu
,
J.
, III
, 2004, “
Navier-Stokes Computations of a Stall-Regulated Wind Turbine
,”
Wind Energy
1095-4244,
7
(
4
), pp.
309
324
.
13.
LePape
,
A.
, and
Gleize
,
V.
, 2006, “
Improved Navier-Stokes Computations of a Stall-Regulated Wind Turbine Using Low Mach Number Preconditioning
,”
44th Aerospace Sciences Meeting and Exhibit
, Reno, NV, Jan. 9–12, AIAA Paper No. 2006-1502.
14.
Xu
,
G.
, and
Sankar
,
L. N.
, 2002, “
Application of a Viscous Flow Methodology to the NREL Phase VI Rotor
,”
40th Aerospace Sciences Meeting and Exhibit
, Reno, NV, Jan. 14–17, AIAA Paper No. 2002-0030.
15.
Spalart
,
P.
, and
Allmaras
,
S.
, 1992, “
A One-Equation Turbulence Model for Aerodynamic Flows
,” AIAA Paper No. 92-0439.
16.
Baldwin
,
B. S.
, and
Lomax
,
H.
, 1978, “
Thin Layer Approximation and Algebraic Model for Separated Turbulent Flows
,”
16th Aerospace Science Meeting
, Huntsville, AL, Jan. 16–18, AIAA Paper No. 78-257.
17.
Eppler
,
R.
, 1990,
Airfoil Design and Data
,
Springer-Verlag
,
Berlin
.
18.
Wang
,
T.
, and
Coton
,
F. N.
, 2000, “
Numerical Simulation of Wind Tunnel Wall Effects on Wind Turbine Flows
,”
Wind Energy
1095-4244,
3
(
3
), pp.
135
148
.
19.
Grant
,
I.
,
Mo
,
M.
,
Parking
,
P.
,
Powell
,
J.
,
Reineche
,
H.
,
Shuang
,
K.
,
Coton
,
F.
, and
Lee
,
F.
, 1998, “
Optical Evaluation of the Wake Characteristics of a Wind Turbine and a Prescribed Wake Model
,”
Fifth International Symposium on Flow Visualization
, Sorrento, Italy, Sept. 1–4, pp.
132.1
132.15
, Paper No. 132.
20.
Simms
,
D.
,
Schreck
,
S.
,
Hand
,
M.
, and
Fingersh
,
L. J.
, 2001, “
NREL Unsteady Aerodynamics Experiment in the NASA-Ames Wind Tunnel: A Comparison of Predictions to Measurements
,” NREL, Technical Report No. TP-500-29494.
21.
Sørensen
,
J. N.
,
Shen
,
W. Z.
, and
Mikkelsen
,
R.
, 2006, “
Wall Correction Model for Wind Tunnels With Open Test Section
,”
AIAA J.
0001-1452,
44
(
8
), pp.
1890
1894
.
22.
Zahle
,
F.
, and
Johansen
,
J.
, 2007, “
Wind Turbine Rotor-Tower Interaction Using an Incompressible Overset Grid Method
,”
AIAA 45th Aerospace Sciences Meeting and Exhibit
, Reno, NV, Jan. 8–11, AIAA Paper No. 2007-425.
23.
Duque
,
E.
,
van Dam
,
C. P.
, and
Hughes
,
S. C.
, 1999, “
Navier-Stokes Simulations of the NREL Combined Experiment Phase II Rotor
,”
37th Aerospace Sciences Meeting and Exhibit
, Reno, NV, Jan. 11–14, pp.
143
153
, AIAA Paper No. 1999-37.
24.
Butterfield
,
C. P.
,
Musial
,
W. P.
,
Scott
,
G. N.
, and
Simms
,
D. A.
, 1992, “
NREL Combined Experimental Final Report—Phase II
,” NREL, Technical Report No. TP-442-4807, NREL, August 1992 (http://www.nrel.gov/docs/legosti/old/4807.pdfhttp://www.nrel.gov/docs/legosti/old/4807.pdf).
25.
van Kuik
,
G. A. M.
,
van Rooij
,
R. P. J. O. M.
, and
Imamura
,
H.
, 2004, “
Analysis of the UAE Phase VI Wind Tunnel Results in the Non-Yawed Flow
,”
2004 EWEC
, Madrid, Jun., p.
29
.
26.
Hasegawa
,
Y.
,
Murata
,
J.
,
Imaura
,
H.
,
Hotta
,
S.
, and
Kikuyama
,
K.
, 2006, “
Calculation of Aerodynamic Force on Horizontal Axis Wind Turbine Rotor Exerted by Tower Effect
,”
European Wind Energy Conference (EWEC)
.
27.
Steijl
,
R.
,
Barakos
,
G.
, and
Badcock
,
K.
, 2006, “
A Framework for CFD Analysis of Helicopter Rotors in Hover and Forward Flight
,”
Int. J. Numer. Methods Fluids
0271-2091,
51
(
8
), pp.
819
847
.
28.
Jameson
,
A.
, 1993, “
Computational Algorithms for Aerodynamic Analysis and Design
,”
Appl. Numer. Math.
0168-9274,
13
(
5
), pp.
383
422
.
29.
Badcock
,
K. J.
,
Richards
,
B. E.
, and
Woodgate
,
M. A.
, 2000, “
Elements of Computational Fluid Dynamics on Block Structured Grids Using Implicit Solvers
,”
Prog. Aerosp. Sci.
0376-0421,
36
, pp.
351
392
.
30.
Morvant
,
R.
,
Badcock
,
K.
,
Barakos
,
G.
, and
Richards
,
B. E.
, 2005, “
Aerofoil-Vortex Interaction Using the Compressible Vorticity Confinement Method
,”
AIAA J.
0001-1452,
43
(
1
), pp.
63
75
.
31.
Spentzos
,
A.
,
Barakos
,
G.
,
Badcock
,
K.
,
Richards
,
P.
,
Wenert
,
B. E.
,
Schreck
,
S.
, and
Raffel
,
M.
, 2005, “
Investigation of Three-Dimensional Dynamic Stall Using Computational Fluid Dynamics
,”
AIAA J.
0001-1452,
43
(
5
), pp.
1023
1033
.
32.
Barakos
,
G.
,
Steijl
,
R.
,
Badcock
,
K.
, and
Brocklehurst
,
A.
, 2005, “
Development of CFD Capability for Full Helicopter Engineering Analysis
,”
31st European Rotorcraft Forum
, Florence, Italy, Sept.
33.
Nayyar
,
P.
,
Barakos
,
G. N.
, and
Badcock
,
K. J.
, 2007, “
Numerical Study of Transonic Cavity Flows Using Large-Eddy and Detached-Eddy Simulations
,”
Aeronaut. J.
0001-9240,
111
(
1117
), pp.
153
164
.
34.
Osher
,
S.
, and
Chakravarthy
,
S.
, 1983, “
Upwind Schemes and Boundary Conditions With Applications to Euler Equations in General Geometries
,”
J. Comput. Phys.
0021-9991,
50
, pp.
447
481
.
35.
Barakos
,
G.
,
Vahdati
,
M.
,
Sayma
,
A. I.
,
Breard
,
C.
, and
Imregun
,
M.
, 2001, “
A Fully Distributed Unstructured Navier-Stokes Solver for Large-Scale Aeroelasticity Computations
,”
Aeronaut. J.
0001-9240,
105
, pp.
419
426
.
36.
Steijl
,
R.
,
Barakos
,
G.
, and
Badcock
,
K.
, 2006, “
A Framework for CFD Analysis of Helicopter Rotors in Hover and Forward Flight
,”
Int. J. Numer. Methods Fluids
0271-2091,
51
(
8
), pp.
819
847
.
37.
Jeong
,
J.
, and
Hussain
,
F.
, 1995, “
On the Identification of a Vortex
,”
J. Fluid Mech.
0022-1120,
285
, pp.
69
94
.
38.
Wilcox
,
D. C.
, 1994,
Turbulence Modelling for CFD
,
DCW Industries, Inc.
,
La Cañada, CA
.
39.
Sant
,
T.
,
van Kuik
,
G.
, and
van Bussel
,
G. J. W.
, 2006, “
Estimating the Angle of Attack From Blade Pressure Measurements on the NREL Phase VI Rotor Using a Free Axial Conditions
,”
Wind Energy
1095-4244,
9
, pp.
549
577
.
You do not currently have access to this content.