Our main purpose was to study the disinfection of a secondary wastewater anaerobic effluent by a combined photolytic-photocatalytic continuous reactor using solar irradiation. This reactor had a rectangular section and included back-and-forth-flow internal channels. It comprised two compartments: the first one (6.4l) corresponded to photolytic disinfection with a 1h residence time and the second one (12.8l) corresponded to photocatalytic disinfection with a 2h residence time. The photocatalyst used was Degussa P-25 TiO2 fixed on an ordinary tile. By use of this reactor between 9:00h and 16:00h with a water flow rate of 3.4lh1, the total coliform concentration diminished by four orders of magnitude, reaching values lower than 102MPN (most probable number)/100ml, which are below the regulation. Even if photolysis was important, this single process did not permit one to obtain an outlet coliform concentration below 103MPN100ml; however, it helped to improve the photocatalytic performance. A decrease in chemical oxygen demand (COD) was also observed in the photocatalytic compartment, illustrating an oxidation of organic pollutants. In parallel, batch experiments were carried out to get information about the residence times, the photocatalytic performance of TiO2 fixed on an ordinary tile, and the photolytic effect. The results suggest that this low cost and easy to operate treatment system could be a promising alternative to usual systems for the decrease in COD and the disinfection of domestic wastewaters.

1.
Thorn
,
J.
, and
Kerekes
,
E.
, 2001, “
Health Effects Among Employees in Sewage Treatment Plants: A Literature Survey
,”
Am. J. Ind. Med.
0271-3586,
40
(
2
), pp.
170
179
.
2.
NOM-001-SEMARNAT-1996, Que Establece los Límites Máximos Permisibles de Contaminantes en las Descargas de Aguas Residuales en Aguas y Bienes Nacionales.
3.
Wen
,
C.
,
Huang
,
X.
, and
Qian
,
Y.
, 1999, “
Domestic Wastewater Treatment Using on Anaerobic Bioreactor Coupled With Membrane Filtration
,”
Process Biochem. (Oxford, U.K.)
1359-5113,
35
, pp.
335
340
.
4.
Metcalf & Eddy, 2003,
Wastewater Engineering, Treatment and Reuse
,
4th ed.
,
McGraw-Hill
,
New York
.
5.
1999,
Environmental Engineers’ Handbook
,
2nd ed.
,
CCR
,
NJ
.
6.
Matsunaga
,
T.
,
Tomoda
,
R.
,
Nakajima
,
T.
, and
Wake
,
H.
, 1985, “
Photoelectrochemical Sterilization of Microbial Cells by Semiconductor Powders
,”
FEMS Microbiol. Lett.
0378-1097,
29
, pp.
211
214
.
7.
Choi
,
Y.-S.
, and
Kim
,
B.-W.
, 2000, “
Photocatalytic Disinfection of E. Coli in a UV∕TiO2-Immobilised Optical-Fibre Reactor
,”
J. Chem. Technol. Biotechnol.
0268-2575,
75
, pp.
1145
1150
.
8.
Huang
,
Z.
,
Maness
,
P. C.
,
Blake
,
D. M.
,
Wolfrum
,
E. J.
,
Smolinski
,
S. L.
, and
Jacoby
,
W. A.
, 2000, “
Bactericidal Mode of Titanium Dioxide Photocatalysis
,”
J. Photochem. Photobiol., A
1010-6030,
130
(
2
), pp.
163
170
.
9.
Glaze
,
W. H.
, 1987, “
Drinking-Water Treatment With Ozone
,”
Environ. Sci. Technol.
0013-936X,
21
, pp.
224
230
.
10.
Cho
,
M.
,
Cheng
,
H.
,
Choi
,
W.
, and
Yoon
,
J.
, 2005, “
Different Inactivation Behaviors of MS-2 Phage and Escherichia Coli in TiO2 Photocatalytic Disinfection
,”
Appl. Microbiol. Biotechnol.
0175-7598,
71
(
1
), pp.
270
275
.
11.
Bekbölet
,
M.
, 1997, “
Photocatalytic Bactericidal Activity of TiO2 in Aqueous
,”
Water Sci. Technol.
0273-1223,
35
(
11
), pp.
95
100
.
12.
Rincón.
,
A.-G.
, and
Pulgarin
,
C.
, 2004, “
Effect of pH, Inorganic Ions, Organic Matter and H2O2 on E. Coli K12 Photocatalytic Inactivation by TiO2 Implications in Solar Water Disinfection
,”
Appl. Catal., B
0926-3373,
51
, pp.
283
302
.
13.
Sawada
,
D.
,
Ohmasa
,
M.
,
Fukuda
,
M.
,
Masumo
,
K.
,
Koide
,
H.
,
Tsunoda
,
S.
, and
Nakamura
,
K.
, 2005, “
Disinfection of Some Pathogens of Mushroom Cultivation by Photocatalytic Treatment
,”
Mycoscience
,
46
, pp.
54
60
.
14.
Watts
,
R. J.
,
Kong
,
S.
,
Orr
,
M. P.
,
Miller
,
G. C.
, and
Henry
,
B. E.
, 1995, “
Photocatalytic Inactivation of Coliform Bacteria and Viruses in Secondary Wastewater Effluent
,”
Water Res.
0043-1354,
29
, pp.
95
100
.
15.
Araña
,
J.
,
Herrera-Melián
,
J. A.
,
Doña-Rodrıguez
,
J. M.
,
González-Díaz
,
O.
,
Viera
,
A.
,
Pérez-Peña
,
J.
,
Marrero-Sosa
,
P. M.
, and
Espino-Jiménez
,
V.
, 2002, “
TiO2-Photocatalysis as a Tertiary Treatment of Naturally Treated Wastewater
,”
Catal. Today
0920-5861,
76
, pp.
279
289
.
16.
Ibáñez
,
J. A.
,
Litter
,
M. I.
, and
Pizarro
,
R. A.
, 2003, “
Photocatalytic Bactericidal Effect of TiO2 on Enterobacter Cloacae. Comparative Study With Other Gram (-) Bacteria
,”
J. Photochem. Photobiol., A
1010-6030,
157
, pp.
81
85
.
17.
Rincón
,
A.
, and
Pulgarin
,
C.
, 2004, “
Bactericidal Action of Illumniated TiO2 on Pure Escherichia Coli and a Natural Bacterial Consortia; Post-Irradiation Events in the Dark and Assessment of the Effective Disinfection Time
,”
Appl. Catal., B
0926-3373,
49
, pp.
99
112
.
18.
Rincón
,
A. G.
, and
Pulgarin
,
C.
, 2004, “
Field Solar E. Coli Inactivation in the Absence and Presence of TiO2, Is UV Solar Dose an Appropriate Parameter for Standardization of Water Solar Disinfection?
,”
Sol. Energy
0038-092X,
77
, pp.
635
648
.
19.
Kim
,
B.
,
Kim
,
D.
,
Cho
,
D.
, and
Cho
,
S.
, 2003, “
Bactericidal Effect of TiO2 Photocatalyst on Selected Food-Borne Pathogenic Bacteria
,”
Chemosphere
0045-6535,
52
, pp.
277
281
.
20.
Rincón
,
A. G.
, and
Pulgarin
,
C.
, 2003, “
Photocatalytical Inactivation of E. Coli: Effect of (Continuous-Intermittent) Light Intensity and of (Suspended-Fixed) TiO2 Concentration
,”
Appl. Catal., B
0926-3373,
44
, pp.
263
284
.
21.
Wist
,
J.
,
Sanabria
,
J.
,
Dierolf
,
C.
,
Torres
,
W.
, and
Pulgarin
,
C.
, 2002, “
Evaluation of Photocatalytic Disinfection of Crude Water for Drinking-Water Production
,”
J. Photochem. Photobiol., A
1010-6030,
147
, pp.
241
246
.
22.
Liu
,
G.
, 2005, “
An Investigation of UV Disinfection Performance Under the Influence of Turbidity and Particulates for Drinking Water Applications
,” Ph.D. thesis, University of Waterloo, ON, Canada.
23.
Wright
,
H. B.
, and
Cairns
,
W. L.
, 1998, “
Ultraviolet Light
,”
Regional Symposium on Water Quality: Effective Disinfection
, CEPIS OPS, Lima, pp. 1–26. http://www.bvsde.paho.org/bvsacg/i/fulltext/symposium/ponen10.pdfhttp://www.bvsde.paho.org/bvsacg/i/fulltext/symposium/ponen10.pdf
24.
Bekbölet
,
M.
, and
Balcioglu
,
I.
, 1996, “
Photocatalytic Degradation Kinetics of Humic Acid in Aqueous TiO2 Dispersions: The Influence of Hydrogen Peroxide and Bicarbonate Ion
,”
Water Sci. Technol.
0273-1223,
34
, pp.
73
80
.
25.
Eggins
,
B. R.
,
Palmer
,
F. L.
, and
Byrne
,
J. A.
, 1997, “
Photocatalytic Treatment of Humic Substance in Drinking Water
,”
Water Res.
0043-1354,
31
, pp.
1223
1226
.
26.
Enríquez
,
R.
, and
Pichat
,
P.
, 2001, “
Interactions of Humic Acid, Quinoline, and TiO2 in Water in Relation to Quinoline Photocatalytic Removal
,”
Langmuir
0743-7463,
17
,
6132
6137
.
27.
Selli
,
E.
,
Baglio
,
D.
,
Montanarella
,
L.
, and
Bidoglio
,
G.
, 1999, “
Role of Humic Acids in the TiO2-Photocatalyzed Degradation of Tetrachloroethene in Water
,”
Water Res.
0043-1354,
33
, pp.
1827
1836
.
You do not currently have access to this content.