Maximum electric power extraction out of available wind power is directly linked to advanced variable speed wind turbine control. The paper presents a memory-based method for variable speed adjustment of wind energy conversion systems. The fundamental idea behind the method is to use certain memorized information (i.e., current rotor speed tracking error, most recent speed tracking error, and previous control experience) to directly modify the firing angle control command sequences. The salient feature of the proposed approach lies in its simplicity in design and implementation. Furthermore, the total required memory space does not grow with time and is much smaller than most existing learning control methods. It is shown that this method, when applied to firing angle control of wind turbines, is able to ensure rotor speed tracking in the presence of varying operation conditions, as verified via computer simulation.

1.
Song
,
Y. D.
,
Dhrikaran
,
B.
, and
Bao
,
X.
, 2000, “
Variable Speed Control of Wind Turbines Using Nonlinear and Adaptive Algorithms
,”
J. Wind. Eng. Ind. Aerodyn.
0167-6105,
85
(
3
), pp.
293
308
.
2.
Holley
,
W. E.
, 2003, “
Wind Turbine Dynamics and Control—Issues and Challenges
,”
Proceedings of the 2003 American Control Conference
, Jun. 4–6, Vol.
5
, pp.
3794
3795
.
3.
Johnson
,
K. E.
,
Lucy
,
Y. P.
,
Balas
,
M. J.
, and
Fingersh
,
L. J.
, 2006, “
Control of Variable Speed Wind Turbines
,”
IEEE Control Syst. Mag.
0272-1708,
26
(
3
), pp.
70
81
.
4.
Novak
,
P.
,
Ekelund
,
T.
,
Jovik
,
I.
, and
Schidtbauer
,
B.
, 1995, “
Modeling and Control of Variable-Speed Wine-Turbine Drive-System Dynamics
,”
IEEE Control Syst. Mag.
0272-1708,
15
(
4
), pp.
28
38
.
5.
Spera
,
D. A.
, 1995,
Wind Turbine Technology—Fundamental Concepts in Wind Turbine Engineering
,
ASME
,
New York
.
6.
Liebst
,
B. S.
, 1982, “
Pitch Control System for Large-Scale Wind Turbines
,”
J. Energy
0146-1412,
7
(
2
), pp.
182
192
.
7.
Johnson
,
G. L.
, 1985,
Wind Power Systems
,
Prentice-Hall
,
Englewood Cliffs, N.J.
8.
Salle
,
S. A.
,
Reardon
,
D.
,
Leithead
,
W. E.
, and
Grimble
,
M. J.
, 1990, “
Review of Wind Turbine Control
,”
Int. J. Control
0020-7179,
52
(
6
), pp.
1295
1310
.
9.
Hilloow
,
R. M.
, and
Sharaf
,
A. M.
, 1996, “
A Rule-Based Fuzzy Logic Controller for a PMW Inverter in a Stand Alone Wind Energy Conversion Scheme
,”
IEEE Trans. Ind. Appl.
0093-9994,
32
(
1
), pp.
57
65
.
10.
Atkeson
,
C. G.
, and
Reinkensmeyer
,
D. J.
, 1992, “
Using Associate Content-Addressable Memories to Control Robots
,”
Neural Networks for Control
,
W. T.
Miller
,
R. S.
Sutton
, and
P. J.
Werbos
, eds.,
Multiscience Press, Inc.
, pp.
255
285
.
11.
Moore
,
A. W.
, 1990, “
Efficient Memory-Based Learning for Robot Control
,” Ph.D. thesis, Technical Report No. 229, Computer Laboratory, University of Cambridge.
12.
Schaal
,
S.
, and
Atkeson
,
C. G.
, 1994, “
Robot Juggling: Implementation of Memory-Based Learning
,”
IEEE Control Syst.
1066-033X,
14
(
1
), pp.
57
71
.
13.
Stanfill
,
C.
, and
Waltz
,
D.
, 1986, “
Toward Memory-Based Reasoning
,”
Commun. ACM
0001-0782,
29
(
12
), pp.
1213
1228
.
14.
Waltz
,
D. L.
, 1987, “
Applications of the Connection Machine
,”
JIEEE Computer
,
20
(
1
), pp.
85
90
.
15.
Albus
,
J. S.
, 1975, “
Data Storage in the Cerebellar Model Articulation Controller (CMAC)
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
97
, pp.
228
233
.
16.
Song
,
Y. D.
, 2006, “
Memory-Based Control of Nonlinear Dynamic Systems: Part I—Design and Analysis
,”
First International Conference on Industrial Electronics and Applications (ICIEA)
,
Singapore
, May.
17.
Muljadi
,
E.
,
Butterfield
,
C. P.
, and
Migliore
,
P.
, 1996, “
Variable Speed Operation of Generators With Rotor-Speed Feedback in Wind Power Applications
,”
15th ASME Wind Energy Symposium
,
Houston
,
TX
.
18.
Johnson
,
K.
,
Fingersh
,
L. J.
,
Balas
,
M.
, and
Pao
,
L.
, 2004, “
Methods for Increasing Region 2 Power Capture on a Variable Speed HAWT
,”
Proceedings of the 23th ASME Wind Energy Symposium
, pp.
103
113
.
19.
Burton
,
T.
,
Sharpe
,
D.
,
Jenkins
,
N.
, and
Bossanyi
,
E.
, 2001,
Wind Energy Handbook
,
Wiley
,
New York
.
20.
Wang
,
Q.
, and
Chang
,
L.
, 2004, “
An Intelligent Maximum Power Extraction Algorithm for Inverter-Based Variable Speed Wind Turbine System
,”
IEEE Trans. Power Electron.
0885-8993,
19
(
5
), pp.
1242
1249
.
21.
Thirnger
,
T.
, and
Linders
,
J.
, 1993, “
Control of Variable Speed of a Fixed-Pitch Wind Turbine Operating in a Wide Speed Range
,”
IEEE Trans. Energy Convers.
0885-8969,
8
(
3
), pp.
520
526
.
22.
Kreyszig
,
E.
, 1968,
Advanced Engineering Mathematics
,
2nd ed.
,
Wiley
,
New York
.
23.
Song
,
Y. D.
, 2000, “
Control of Wind Turbines Using Memory-Based Method
,”
J. Wind. Eng. Ind. Aerodyn.
0167-6105,
85
(
3
), pp.
263
275
.
24.
Whaley
,
D. M.
,
Song
,
W. L.
, and
Ertugrul
,
N.
, 2005, “
Investigation of Switched-Mode Rectifier for Control of Small-Scale Wind Turbines
,”
2005 Industry Applications Conference, Conference Record of the 2005
, Vol.
4
, pp.
2849
2856
.
25.
Slootweg
,
J. G.
,
de Haan
,
S. W. H.
,
Polinder
,
H.
, and
Kling
,
W. L.
, 2003, “
General Model for Representing Variable Speed Wind Turbines in Power System Dynamics Simulations
,”
IEEE Trans. Power Syst.
0885-8950,
18
(
1
), pp.
144
151
.
26.
Kojabadi
,
H. M.
,
Chang
,
L.
, and
Boutot
,
T.
, 2004, “
Development of a Novel Wind Turbine Simulator for Wind Energy Conversion Systems Using an Inverter-controlled Induction Motor
,”
IEEE Trans. Energy Convers.
0885-8969,
19
(
3
), pp.
547
552
.
27.
Petersson
,
A.
,
Thiringer
,
T.
,
Harnefors
,
L.
, and
Petru
,
T.
, 2005, “
Modeling and Experimental Verification of Grid Interaction of a DFIG Wind Turbine
,”
IEEE Trans. Energy Convers.
0885-8969,
20
(
4
), pp.
878
886
.
28.
Mihet-Popa
,
L.
,
Blaabjerg
,
F.
, and
Boldea
,
I.
, 2004, “
Wind Turbine Generator Modeling and Simulation Where Rotational Speed. Is the Controlled Variable
,”
IEEE Trans. Ind. Appl.
0093-9994,
40
(
1
), pp.
3
10
.
29.
Senjyu
,
T.
,
Sakamoto
,
R.
,
Urasaki
,
N.
,
Funabashi
,
T.
,
Fujita
,
H.
, and
Sekine
,
H.
, 2006, “
Output Power Leveling of Wind Turbine Generator for All Operating Regions by Pitch Angle Control
,”
IEEE Trans. Energy Convers.
0885-8969,
21
(
2
), pp.
467
475
.
You do not currently have access to this content.