This paper presents a mathematical framework to properly account for uncertainty in wind resource assessment and wind energy production estimation. A meteorological tower based wind measurement campaign is considered exclusively, in which measure-correlate-predict is used to estimate the long-term wind resource. The evaluation of a wind resource and the subsequent estimation of the annual energy production (AEP) is a highly uncertain process. Uncertainty arises at all points in the process, from measuring the wind speed to the uncertainty in a power curve. A proper assessment of uncertainty is critical for judging the feasibility and risk of a potential wind energy development. The approach in this paper provides a framework for an accurate and objective accounting of uncertainty and, therefore, better decision making when assessing a potential wind energy site. It does not investigate the values of individual uncertainty sources. Three major aspects of site assessment uncertainty are presented here. First, a method is presented for combining uncertainty that arises in assessing the wind resource. Second, methods for handling uncertainty sources in wind turbine power output and energy losses are presented. Third, a new method for estimating the overall AEP uncertainty when using a Weibull distribution is presented. While it is commonly assumed that the uncertainty in the wind resource should be scaled by a factor between 2 and 3 to yield the uncertainty in the AEP, this work demonstrates that this assumption is an oversimplification and also presents a closed form solution for the sensitivity factors of the Weibull parameters.

1.
Frandsen
,
S.
, and
Christensen
,
C. J.
, 1992, “
Accuracy of Estimation of Energy Production From Wind Power Plants
,”
Wind Eng.
0309-524X,
16
(
5
), pp.
257
268
.
2.
Pedersen
,
T. F.
, 2004, “
Power Curve Measurements Under Influence of Skew Airflow and Turbulence
,” Risø National Laboratory Report.
3.
Mortensen
,
N. G.
, 1994, “
Wind Measurements for Wind Energy Applications: A Review
,”
British Wind Energy Association Conference
,
Sirling, GB
.
4.
Baily
,
B.
, 1997, “
Wind Resource Assessment Handbook
,” AWS Scientific, Inc. Report.
5.
Quarton
,
D.
, 2004, “
Wind Turbines—Part 121: Power Performance Measurements of Grid Connected Wind Turbines
,”
IEC 61400-12
, Ed. 1.
6.
Manwell
,
J. F.
,
McGowan
,
J. G.
, and
Rogers
,
A. L.
, 2002,
Wind Energy Explained
,
Wiley
,
West Sussex, England
, Chap. 2.
7.
Frandsen
,
S.
, 1991, “
Uncertainty on Wind Turbine Power Curve Measurements
,”
British Wind Energy Association Conference
,
Swansea, GB
.
8.
Taylor
,
J.
, 1997,
An Introduction to Error Analysis
,
2nd ed.
,
University Science Books
,
Sausalito, CA
, Chaps. 1–4.
9.
Lockhart
,
T.
, and
Bailey
,
B.
, 1998, “
The Maximum Type 40 Anemometer Calibration Project
,” NRG Systems Report (available at http://www.nrgsystems.com/store/product_detail.php?cd=11&s=1899&tab=support.
10.
Pedersen
,
T. F.
, 2004, “
Characterisation and Classification of RISØ P2546 Cup Anemometer
,” Risø National Laboratory Report.
11.
Kristensen
,
L.
, 1999, “
The Perennial Cup Anemometer
,”
Wind Energy
1095-4244,
2
, pp.
59
75
.
12.
Papadopoulos
,
K. H.
,
Stefanatos
,
N. C.
,
Paulsen
,
U. S.
, and
Morfiadakis
,
E.
, 2001, “
Effects of Turbulence and Flow Inclination on the Performance of Cup Anemometers in the Field
,”
Boundary-Layer Meteorol.
0006-8314,
101
, pp.
77
107
.
13.
Albers
,
A.
,
Klug
,
H.
, and
Westermann
,
D.
, 2000, “
Outdoor Comparisons of Cup Anemometers
,”
DEWI Magazine
,
17
, pp.
5
15
.
14.
Kline
,
J.
, 2002, “
Effects of Tubular Anemometer Towers on Wind Speed Measurements
,”
AWEA Windpower 2002
,
Portland, OR
.
15.
Maribo Pedersen
,
B.
,
Hansen
,
K. S.
,
Oye
,
S.
,
Brinch
,
M.
, and
Fabian
,
O.
, 1992, “
Some Experimental Investigations on the Influence of the Mounting Arrangements on the Accuracy of Cup-Anemometer Measurements
,”
J. Wind. Eng. Ind. Aerodyn.
0167-6105,
39
, pp.
373
383
.
16.
Baker
,
R. W.
,
Walker
,
S. N.
, and
Wade
,
J. E.
, 1990, “
Annual and Seasonal Variations in Mean Wind Speed and Wind Turbine Energy Production
,”
Sol. Energy
0038-092X,
45
(
5
), pp.
285
289
.
17.
Klink
,
K.
, 2002, “
Trends and Interannual Variability of Wind Speed Distributions in Minnesota
,”
J. Clim.
0894-8755,
15
, pp.
3311
3317
.
18.
Landberg
,
L.
, and
Mortensen
,
N. G.
, 1993, “
A Comparison of Physical and Statistical Methods for Estimating the Wind Resource at a Site
,”
British Wind Energy Association Conference
,
York, GB
.
19.
Landberg
,
L.
,
Myllerup
,
L.
,
Rathman
,
O.
,
Petersen
,
E. L.
,
Jørgensen
,
B. H.
,
Badger
,
J.
, and
Mortensen
,
N. G.
, 2003, “
Wind Resource Estimation: An Overview
,”
Wind Energy
1095-4244,
6
(
3
), pp.
261
271
.
20.
Rogers
,
A. L.
,
Rogers
,
J. W.
, and
Manwell
,
J. F.
, 2005, “
Uncertainties in Results of Measure-Correlate-Predict Analyses
,”
AWEA Windpower 2005
,
Denver, CO
.
21.
Breslow
,
P. B.
, and
Sailor
,
D. J.
, 2002, “
Vulnerability of Wind Power Resources to Climate Change in the Continental United States
,”
Renewable Energy
0960-1481,
27
, pp.
585
598
.
22.
Elkinton
,
M. R.
,
Rogers
,
A. L.
, and
McGowan
,
J. G.
, 2006, “
An Investigation of Wind-Shear Models and Experimental Data Trends for Different Terrains
,”
Wind Eng.
0309-524X,
30
(
4
), pp.
341
350
.
23.
Livingston
,
J. T.
, and
Anderson
,
T.
, 2004, “
Wind Shear, Taller Turbines, and the Effects on Wind Farm Development Create a Need for Taller MET Towers
,” Windtower Composites Report (http://compositetower.com/pdf/windshearpositiondoc.pdfhttp://compositetower.com/pdf/windshearpositiondoc.pdf).
24.
Brower
,
M.
, 2006, “
The Role of Wind Flow Modeling and Mapping
,”
AWEA and CanWEA Resource Assessment Workshop
,
Syracuse, NY
.
25.
Doran
,
J. C.
, and
Verholek
,
M. G.
, 1977, “
A Note on Vertical Extrapolation Formulas for Weibull Velocity Distribution Parameters
,”
J. Appl. Meteorol.
0021-8952,
17
(
3
), pp.
410
412
.
26.
Wieringa
,
J.
, 1989, “
Shapes of Annual Frequency Distributions of Wind Speed Observed on High Meteorological Masts
,”
Boundary-Layer Meteorol.
0006-8314,
47
, pp.
85
110
.
27.
Rogers
,
A. L.
,
Rogers
,
J. W.
, and
Manwell
,
J. F.
, 2005, “
Comparison of the Performance of Four Measure-Correlate-Predict Algorithms
,”
J. Wind. Eng. Ind. Aerodyn.
0167-6105,
93
(
3
), pp.
243
264
.
28.
Taylor
,
M.
,
Machiewicz
,
P.
,
Brower
,
M.
, and
Markus
,
M.
, 2005, “
Quantifying Uncertainty in Wind Resource Estimates
,”
AWEA Windpower 2005
,
Denver, CO
.
29.
Pedersen
,
T. F.
,
Gjerding
,
S.
,
Ingham
,
P.
,
Enevoldsen
,
P.
,
Hansen
,
J. K.
, and
Jørgensen
,
H. K.
, 2002, “
Wind Turbine Power Performance Verification in Complex Terrain and Wind Farms
,” Risø National Laboratory Report.
30.
Jones
,
S.
, 2006, “
Examining Project Underperformance
,”
AWEA Windpower 2006
,
Pittsburgh, PA
.
31.
Homola
,
M. C.
, 2005, “
Impacts and Causes of Icing on Wind Turbines
,” Navrik University College Report.
32.
Bailey
,
B.
, and
Brower
,
M.
, 2004, “
Estimation of the Long-Term Average Wind Speed and Energy Production at the Proposed East Mountain Wind Project Site
,” AWS True Wind, LLC Report.
33.
Jensen
,
N. O.
, 1983, “
A Note on Wind Generator Interaction
,”
Risø National Laboratory
, Report No. Risø-M-2411.
34.
Smith
,
D. A.
,
Harris
,
M.
,
Coffey
,
A. S.
,
Mikkelsen
,
T.
,
Jørgensen
,
H. E.
,
Mann
,
J.
, and
Danielian
,
R.
, 2006, “
Wind LIDAR Evaluation at the Danish Wind Test Site in Horsore
,”
Wind Energy
1095-4244,
9
, pp.
97
93
.
35.
Rogers
,
A. L.
,
Walls
,
E.
,
Henson
,
W.
, and
Manwell
,
J. F.
, 2007, “
Addressing Ground Clutter Corruption of Sodar Measurements
,”
45th AIAA Aerospace Sciences Meeting and Exhibit (ASME Wind Energy Symposium)
,
Reno, NV
.
This content is only available via PDF.
You do not currently have access to this content.