Computational fluid dynamics simulations were performed to model solar ZnO dissociation in a tubular aerosol reactor at ultrahigh temperatures (19002300K). Reactor aspect ratios ranged between 0.15 and 0.45, with the smallest ratio base case corresponding to a reactor diameter of 0.02286m. Gas flow rates were set such that the Ar:ZnO ratio was greater than 3:1 and the system residence time was below 2s. The system was found to exhibit highly laminar flow in all cases (Re10), but gas velocity profiles did not seriously affect temperature profiles. Particle heating was nearly instantaneous, a result of the high radiation heat flux from the wall. There was essentially no difference between gas and particle temperatures due to the high surface area for conductive heat exchange between the phases. Calculation of ZnO conversion showed that significant conversions (>90%) could be attained for residence times typical of rapid aerosol processing. Particle sizes of >1μm negatively affected conversion, but sizes of 10μm still gave acceptable conversion levels. Simulation of reaction of product oxygen with the reactor wall showed that a reactor constructed of an oxidation-sensitive material would not be a viable choice for a high temperature solar reactor.

1.
Steinfeld
,
A.
, 2002, “
Solar Hydrogen Production via a Two-Step Water-splitting Thermochemical Cycle Based on Zn∕ZnO Redox Reactions
,”
Int. J. Hydrogen Energy
0360-3199,
27
(
6
), pp.
611
619
.
2.
Perkins
,
C.
, and
Weimer
,
A.
, 2004, “
Likely Near-Term Solar-Thermal Water Splitting Technologies
,”
Int. J. Hydrogen Energy
0360-3199,
29
(
15
), pp.
1587
1599
.
3.
Chacon
,
D.
,
Scott
,
D. R.
,
Buechler
,
K. J.
, and
Weimer
,
A. W.
, 2001, “
Effect of Promoters of the Product Quality of Nanophase SiC∕a‐Si3N4 Composite Powders Synthesized Through Carbothermal Reduction Nitridation
,”
J. Mater. Sci.
0022-2461,
36
(
14
), pp.
3395
3402
.
4.
Dahl
,
J. K.
,
Buechler
,
K. J.
,
Finley
,
R.
,
Stanislaus
,
T.
,
Weimer
,
A. W.
,
Lewandowski
,
A.
,
Bingham
,
C.
,
Smeets
,
A.
, and
Schneider
,
A.
, 2004, “
Rapid Solar-Thermal Dissociation of Natural Gas in an Aerosol Flow Reactor
,”
Energy
0360-5442,
29
(
5-6
), pp.
715
725
.
5.
Dahl
,
J. K.
,
Tamburini
,
J.
,
Weimer
,
A. W.
,
Lewandowski
,
A.
,
Pitts
,
R.
, and
Bingham
,
C.
, 2001, “
Solar-Thermal Processing of Methane to Produce Hydrogen and Syngas
,”
Energy Fuels
0887-0624,
15
(
5
), pp.
1227
1232
.
6.
Maeda
,
H.
,
Yoshikawa
,
T.
,
Kusakabe
,
K.
, and
Morooka
,
S.
, 1994, “
Synthesis of Ultrafine NbB2 Powder by Rapid Carbothermal Reduction in a Vertical Tubular Reactor
,”
J. Alloys Compd.
0925-8388,
215
(
1-2
), pp.
127
134
.
7.
Saito
,
T.
,
Fukuda
,
T.
,
Maeda
,
H.
,
Kusakabe
,
K.
, and
Morooka
,
S.
, 1997, “
Synthesis of Ultrafine Titanium Diboride Particles by Rapid Carbothermal Reduction in a Particulate Transport Reactor
,”
J. Mater. Sci.
0022-2461,
32
(
15
), pp.
3933
3938
.
8.
Weimer
,
A. W.
,
Moore
,
W. G.
,
Roach
,
R. P.
,
Haney
,
C. N.
, and
Rafaniello
,
W.
, 1991, “
Rapid Carbothermal Reduction of Boron Oxide in a Graphite Transport Reactor
,”
AIChE J.
0001-1541,
37
, pp.
759
768
.
9.
Weimer
,
A. W.
,
Moore
,
W. G.
,
Roach
,
R. P.
,
Hitt
,
J. E.
,
Dixit
,
R. S.
, and
Pratsinis
,
S.
, 1992, “
Kinetics of Carbothermal Reduction Synthesis of Boron Carbide
,”
J. Am. Ceram. Soc.
0002-7820,
75
(
9
), pp.
2509
2514
.
10.
Xiong
,
Y.
,
Pratsinis
,
S.
, and
Weimer
,
A. W.
, 1992, “
Modeling the Formation of Boron Carbide Particles in an Aerosol Flow Reactor
,”
AIChE J.
0001-1541,
38
(
11
), pp.
1685
1692
.
11.
Panda
,
S.
, and
Pratsinis
,
S.
, 1995, “
Modeling the Synthesis of Aluminum Particles by Evaporation-Condensation in an Aerosol Flow Reactor
,”
Nanostruct. Mater.
0965-9773,
5
(
7-8
), pp.
755
767
.
12.
Hammache
,
A.
, and
Bilgen
,
E.
, 1988, “
Evaluation of Thermal Efficiency and Cost of High-Temperature Solar Heat From Central Receiver Systems to Use in Hydrogen Producing Thermochemical Processes
,”
Int. J. Hydrogen Energy
0360-3199,
13
(
9
), pp.
539
546
.
13.
COMSOL
, 2006,
COMSOL Multiphysics
,
COMSOL AB
,
Los Angeles, CA
.
14.
Dahl
,
J.
,
Weimer
,
A. W.
,
Lewandowski
,
A.
,
Pitts
,
R.
,
Bingham
,
C.
, and
Glatzmaier
,
G.
, 2001, “
Hydrogen Synthesis by the Solar-Thermal Dissociation of Methane
,” Abstracts of Papers of the American Chemical Society, Vol.
221
, pp.
U494
U494
.
15.
Lide
,
D.
, ed., 1993,
CRC Handbook of Chemistry and Physics
,
74th ed.
,
CRC Press
, Boca Raton.
16.
Bird
,
R. B.
,
Stewart
,
W. E.
, and
Lightfoot
,
E. N.
, 1960,
Transport Phenomena
,
1st ed.
,
Wiley
, New York.
17.
Aref’ev
,
K. M.
,
Balashova
,
N. B.
,
Guseva
,
M. A.
, and
Zhilin
,
A. V.
, 1995, “
Diffusion of Vapors of Metals of Group II in Inert Gases, Nitrogen, and Hydrogen
,”
High Temp.
0018-151X,
33
(
1
), pp.
142
145
.
18.
Hinds
,
W. C.
, 1999,
Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles
,
1st ed.
,
Wiley
, New York.
19.
L’vov
,
B.
, 1997, “
Interpretation of Atomized Mechanisms in Electrothermal Atomic Absorption Spectrometry by Analysis of the Absolute Rates of the Processes
,”
Spectrochim. Acta, Part B
0584-8547,
52
, pp.
1
23
.
20.
Moller
,
S.
, and
Palumbo
,
R.
, 2001, “
Solar Thermal Decomposition Kinetics of ZnO in the Temperature Range 1950–2400K
,”
Chem. Eng. Sci.
0009-2509,
56
(
15
), pp.
4505
4515
.
21.
Weidenkaff
,
A.
,
Reller
,
A.
,
Wokaun
,
A.
, and
Steinfeld
,
A.
, 2000, “
Thermogravimetric Analysis of the ZnO∕Zn Water Splitting Cycle
,”
Thermochim. Acta
0040-6031,
359
(
1
), pp.
69
75
.
22.
Perkins
,
C.
, 2006,
Solar Thermal Decomposition of ZnO in Aerosol Flow for Renewable Hydrogen Production
,
University of Colorado
, Boulder.
23.
Siegel
,
R.
, and
Howell
,
J. R.
, 1992,
Thermal Radiation Heat Transfer
,
3rd ed.
,
Taylor & Francis
, Washington, D.C.
24.
Bohren
,
C. F.
, and
Huffman
,
D. R.
, 1983,
Absorption and Scattering of Light by Small Particles
,
Wiley-Interscience
, New York.
25.
Liu
,
Y.
,
Hsieh
,
J.
, and
Tung
,
S.
, 2006, “
Extraction of Optical Constants of Zinc Oxide Thin Films by Ellipsometry With Various Models
,”
Thin Solid Films
0040-6090,
510
(
1-2
), pp.
32
38
.
26.
Coulson
,
J.
, and
Richardson
,
J.
, 1999,
Chemical Engineering: Fluid Flow, Heat Transfer, and Mass Transfer
,
6th ed.
,
Butterworth-Heinemann
, Oxford, Vol.
1
.
27.
Dahl
,
J.
,
Buechler
,
K.
,
Weimer
,
A.
,
Lewandowski
,
A.
, and
Bingham
,
C.
, 2004, “
Solar-Thermal Dissociation of Methane in a Fluid-Wall Aerosol Flow Reactor
,”
Int. J. Hydrogen Energy
0360-3199,
29
(
7
), pp.
725
736
.
28.
Cappelen
,
H.
,
Johansen
,
K. H.
, and
Motzfeldt
,
K.
, 1981, “
Oxidation of Silicon-Carbide in Oxygen and in Water-Vapor at 1500-Degrees-C
,”
Acta Chem. Scand., Ser. A
0302-4377,
35
(
4
), pp.
247
254
.
29.
Wagner
,
C.
, 1958, “
Passivity During the Oxidation of Silicon at Elevated Temperatures
,”
J. Appl. Phys.
0021-8979,
29
(
9
), pp.
1295
1297
.
You do not currently have access to this content.