Background. The calculation of radiation absorption by the catalyst in solar photocatalytic reactors has been addressed by some authors, because it is a necessary step for the modeling of the detoxification of polluted water in these systems. Generally transparent pollutants have been considered, which somewhat simplifies the calculations. However, there has been an increasing interest in the study of solar photocatalytic degradation of dyes. These substances are not transparent to the radiation that the catalyst is able to absorb, and therefore their optical properties must be taken into account in the radiative modeling. Method of Approach. Absorption of radiation by the catalyst suspended in colored water is modeled by using the P1 approximation of radiative transfer theory. The absorption coefficient of the dye is taken into account in these calculations. A kinetic model is used to model degradation rates, based on the results of the radiative calculations. This has to be done through an Euler type method, because the reduction of dye concentration constantly modifies the optical conditions on the reactor, requiring a recalculation of radiation absorption at each step. Also, photocatalytic degradation experiments were carried out in a CPC solar photocatalytic reactor with tubular reaction space. Degradation of the Acid Orange 24 Azo dye was studied. The experimental degradation rates are compared with theoretical predictions. Results. An important influence of dye concentration is observed in the distribution of absorbed radiation, and also this parameter has a notorious effect on the predicted degradation rates. As a function of catalyst concentration, the degradation rate first increases rapidly and then at a smaller pace with an apparent linear trend. The experimental results can be reproduced well by the model. Conclusions. The proposed methodology allows modeling the solar photocatalytic degradation of dyes. The method should be applicable as long as the dye absorption coefficient is not too high in the wavelength region where the catalyst absorbs.

1.
Neppolian
,
B.
,
Choi
,
H. C.
,
Sakthivel
,
S.
,
Arabindoo
,
B.
, and
Murugesan
,
V.
, 2002, “
Solar Light Induced and Tio2 Assisted Degradation of Textile Dye Reactive Blue 4
,”
Chemosphere
0045-6535,
46
, pp.
1173
1181
.
2.
Wang
,
Y.
, 2000, “
Solar Photocatalytic Degradation of Eight Commercial Dyes in TiO2 Suspension
,”
Water Res.
0043-1354,
34
, pp.
990
994
.
3.
Kositsi
,
M.
,
Antoniadis
,
A.
,
Poulios
,
I.
,
Kiridis
,
I.
, and
Malato
,
S.
, 2004, “
Solar Photocatalytic Treatment of Simulated Dyestuff Effluents
,”
Sol. Energy
0038-092X,
77
, pp.
591
600
.
4.
Augugliaro
,
V.
,
Baiocchi
,
C.
,
Bianco Prevot
,
A.
,
García-López
,
E.
,
Loddo
,
V.
,
Malato
,
S.
,
Marcí
,
G.
,
Palmisano
,
L.
,
Pazzi
,
M.
, and
Pramauro
,
E.
, 2002, “
Azo-Dyes Photocatalytic Degradation in Aqueous Suspension of TiO2 Under Solar Irradiation
,”
Chemosphere
0045-6535,
49
, pp.
1223
1230
.
5.
Tanaka
,
K.
,
Padermpole
,
K.
, and
Hisanaga
,
T.
, 2000, “
Photocatalytic Degradation of Commercial Azo Dyes
,”
Water Res.
0043-1354,
34
, pp.
327
333
.
6.
Alfano
,
O. M.
,
Cabrera
,
M. I.
, and
Cassano
,
A. E.
, 1997, “
Photocatalytic Reactions Involving Hidroxyl Radical Attack. 1. Reaction Kinetics Formulation with Explicit Photon Absorption Effects
,”
J. Catal.
0021-9517,
172
, pp.
370
379
.
7.
Turchi
,
C.
, and
Ollis
,
D.
, 1990, “
Photocatalytic Degradation of Organic Water Contaminants Mechanism Involving Hydroxyl Radical Attack
,”
J. Catal.
0021-9517,
122
, pp.
178
192
.
8.
Cassano
,
A. E.
, and
Alfano
,
O. M.
, 2000, “
Reaction Engineering of Suspended Solid Heterogeneous Photocatalytic Reactors
,”
Catal. Today
0920-5861,
58
, pp.
167
197
.
9.
Arancibia-Bulnes
,
C. A.
, and
Cuevas
,
S. A.
, 2004, “
Modeling of the Radiation Field in a Parabolic Trough Solar Photocatalytic Reactor
,”
Sol. Energy
0038-092X,
76
, pp.
615
622
.
10.
Arancibia-Bulnes
,
C. A.
,
Bandala
,
E. R.
, and
Estrada
,
C. A.
, 2002, “
Radiation Absorption and Rate Constants For Carbaryl Photocatalytic Degradation in a Solar Collector
,”
Catal. Today
0920-5861,
76
, pp.
149
159
.
11.
Martín
,
C. A.
,
Sgalari
,
G.
, and
Santarelli
,
F.
, 1999, “
Photocatalytic Processes Using Solar Radiation. Modeling of Photodegradation of Contaminants in Polluted Waters
,”
Ind. Eng. Chem. Res.
0888-5885,
38
, pp.
2940
2946
.
12.
Pasquali
,
M.
,
Santarelli
,
F.
,
Porter
,
J. F.
, and
Yue
,
P.-L.
, 1996, “
Radiative Transfer in Photocatalytic Systems
,”
AIChE J.
0001-1541,
42
, pp.
532
537
.
13.
Brandi
,
R. J.
,
Alfano
,
O. M.
, and
Cassano
,
A. E.
, 1999, “
Rigorous Model and Experimental Verification of the Radiation Field in a Flat-Plate Solar Collector Simulator Employed for Photocatalytic Reactions
,”
Chem. Eng. Sci.
0009-2509,
54
, pp.
2817
2827
.
14.
Curcó
,
D.
,
Giménez
,
J.
,
Addardak
,
A.
,
Cervera-March
,
S.
, and
Esplugas
,
S.
, 2002, “
Effects of Radiation Absorption and Catalyst Concentration on the Photocatalytic Degradation of Pollutants
,”
Catal. Today
0920-5861,
76
, pp.
177
188
.
15.
Cabrera
,
M. I.
,
Alfano
,
O. M.
, and
Cassano
,
A. E.
, 1996, “
Absortion and Scattering Coefficients of Titanium Dioxide Particulate Suspensions in Water
,”
J. Phys. Chem.
0022-3654,
100
, pp.
20043
20050
.
16.
Salaices
,
M.
,
Serrano
,
B.
, and
de Lasa
,
H. I.
, 2002, “
Experimental Evaluation of Photon Absorption in an Aqueous TiO2 Slurry Reactor
,”
Chem. Eng. J.
0300-9467,
90
, pp.
219
229
.
17.
Rossetti
,
G. H.
,
Albizzati
,
E. D.
, and
Alfano
,
O. M.
, 2004, “
Modeling of a Flat-Plate Solar Reactor. Degradation of Formic Acid by the Photo-Fenton Reaction
,”
Sol. Energy
0038-092X,
77
, pp.
461
470
.
18.
Bandala
,
E. R.
,
Arancibia-Bulnes
,
C. A.
,
Orozco
,
S. L.
, and
Estrada
,
C. A.
, 2004, “
Solar Photoreactors Comparison Based on Oxalic Acid Photocatalytic Degradation
,”
Sol. Energy
0038-092X,
77
, pp.
503
512
.
19.
Villafán Vidales
,
H. I.
, 2005, Master’s degree thesis (in Spanish), Universidad Nacional Autónoma de México, México, pp.
30
33
.
20.
Modest
,
M. F.
, 2003,
Radiative Heat Transfer
.
2nd ed.
,
Academic
,
New York
, pp.
282
283
.
21.
Marshak
,
R. E.
, 1947, “
Note on the Spherical Harmonic Method as Applied to the Milne Problem on a Sphere
,”
Phys. Rev.
0031-899X,
71
, pp.
443
446
.
22.
Olver
,
F. W. J.
, 1972, in
Handbook of Mathematical Functions
, edited by
M.
Abramowitz
and
I. A.
Stegun
,
Dover
,
New York
, Chap. 9.
23.
Mundy
,
W. C.
,
Roux
,
J. A.
, and
Smith
,
A. M.
, 1974, “
Mie Scattering by Spheres in an Absorbing Medium
,”
J. Opt. Soc. Am.
0030-3941,
64
, pp.
1593
1597
.
24.
Bohren
,
C. F.
, and
Gilra
,
D. P.
, 1979, “
Extinction by a Spherical Particle in an Absorbing Medium
,”
J. Colloid Interface Sci.
0021-9797,
72
, pp.
215
221
.
25.
Lebedev
,
A. N.
,
Gartz
,
M.
,
Kreibig
,
U.
, and
Stenzel
,
O.
, 1999, “
Optical Extinction by Spherical Particles in an Absorbing Medium: Application to Composite Absorbing Films
,”
Eur. Phys. J. D
1434-6060,
6
, pp.
365
373
.
26.
Sudiarta
,
I. W.
, and
Chylek
,
P.
, 2001, “
Mie-Scattering Formalism for Spherical Particles Embedded in an Absorbing Medium
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
70
, pp.
709
714
.
27.
Bruscaglioni
,
P.
,
Ismaelli
,
A.
, and
Zaccanti
,
G.
, 1993,
A Note on the Definition of Scattering Cross Sections and Phase Functions For Spheres Immersed in an Absorbing Medium
,”
Waves Random Media
0959-7174,
3
, pp.
147
156
.
28.
Bohren
,
C. F.
, and
Huffman
,
D. R.
, 1983
Absorption and Scattering of Light by Small Particles
.
Wiley
,
New York
, p.
207
.
29.
Curcó
,
D.
,
Malato
,
S.
,
Blanco
,
J.
,
Giménez
,
J.
, and
Marco
,
P.
, 1996, “
Photocatalytic Degradation of Phenol: Comparison Between Pilot-Plant-Scale and Laboratory Results
,”
Sol. Energy
0038-092X,
56
, pp.
387
400
.
You do not currently have access to this content.