The main UV dose-related kinetic parameters influencing solar disinfection have been investigated for the design of a continuous flow reactor suitable for a village-scale water treatment system. The sensitivities of different pathogenic microorganisms under solar light in batch processes have been compared in order to define their relative disinfection kinetics with E. coli used as a baseline organism. Dose inactivation kinetics have been calculated for small scale disinfection systems operating under different conditions such as reflector type, flow rate, process type, photocatalytic enhancement, and temperature enhancement using E. coli K-12 as a model bacterium. Solar disinfection was shown to be successful in all experiments with a slight improvement in the disinfection kinetic found when a fixed TiO2 photocatalyst was placed in the reactor. There was also evidence that the photocatalytic mechanism prevented regrowth in the post-irradiation environment. A definite synergistic solar UV∕temperature effect was noticed at a temperature of 45°C. The disinfection kinetics for E. coli in continuous flow reactors have been investigated with respect to various reflector shapes and flow regimes by carrying out a series of experiments under natural sunlight. Finally, photocatalytic and temperature enhancements to the continuous flow process have been evaluated.

1.
Downes
,
A.
, and
Blunt
,
T. P.
, 1877, “
Researches on the Effect of Light Upon Bacteria and Other Organisms
,”
Proc. R. Soc. London
0370-1662,
26
, pp.
488
500
.
2.
McGuigan
,
K. G.
,
Joyce
,
T. M.
, and
Conroy
,
R. M.
, 1999, “
Solar Disinfection: Use of Sunlight to Decontaminate Drinking Water in Developing Countries
,”
J. Med. Microbiol.
0022-2615,
48
, pp.
765
787
.
3.
Conroy
,
R. M.
,
Elmore-Meegan
,
M.
,
Joyce
,
T. M.
,
McGuigan
,
K. G.
, and
Barnes
,
J.
, 2001, “
Solar Disinfection of Drinking Water Protects Against Cholera in Children Aged Under 6
,”
Arch. Dis. Child
0003-9888,
85
, pp.
293
295
.
4.
Smith
,
R.
,
Kehoe
,
S.
,
McGuigan
,
K. G.
, and
Barer
,
M.
, 2000, “
Effects of Simulated Solar Disinfection on Infectivity of Salmonella Typhimurium
,”
Lett. Appl. Microbiol.
0266-8254,
31
, pp.
284
288
.
5.
Lonen
,
J.
,
Kilvington
,
S.
,
Kehoe
,
S. C.
,
Al-Touati
,
F.
, and
McGuigan
,
K. G.
, 2005, “
Solar and Photocatalytic Disinfection of Protozoan, Fungal and Bacterial Microbes in Drinking Water
,”
Water Res.
0043-1354,
39
, pp.
877
883
.
6.
Malato
,
S.
,
Blanco
,
J.
,
Caceres
,
J.
,
Fernandez-Alba
,
A. R.
,
Aguera
,
A.
, and
Rodriguez
,
A.
, 2002, “
Photocatalytic Treatment of Water-Soluble Pesticides by Photo-Fenton and TiO2 Using Solar Energy
,”
Catal. Today
0920-5861,
76
, pp.
209
220
.
7.
Acra
,
A.
,
Jurdi
,
M.
,
Mu’llallem
,
H.
,
Karahagopian
,
Y.
, and
Raffoul
,
Z.
, 1989, “
Water Disinfection by Solar Radiation-Assessment and Application
,” Technical Study 66e, IRDC.
8.
Vidal
,
A.
, and
Diaz
,
A. I.
, 2000, “
High Performance, Low Cost Solar Collectors for Disinfection of Contaminated Water
,”
Water Environ. Res.
1061-4303,
72
, pp.
271
276
.
9.
McLoughlin
,
O. A.
,
Kehoe
,
S. C.
,
McGuigan
,
K. G.
,
Duffy
,
E. F.
,
Al Touati
,
F.
,
Gernjak
,
W.
,
Oller
,
I.
,
Malato
,
S.
, and
Gill
,
L. W.
, 2004, “
Solar Disinfection of Contaminated Water: A Comparison of Three Small-Scale Reactors
,”
Sol. Energy
0038-092X,
77
, pp.
657
664
.
10.
McLoughlin
,
O. A.
,
Fernández Ibáñez
,
P.
,
Gernjak
,
W.
,
Malato Rodríguez
,
S.
, and
Gill
,
L. W.
, 2004, “
Photocatalytic Disinfection of Water Using Low Cost Compound Parabolic Collectors
,”
Sol. Energy
0038-092X,
77
, pp.
625
633
.
11.
Rincón
,
A. G.
, and
Pulgarin
,
C.
, 2004, “
Field Solar E. Coli Inactivation in the Absence and Presence of TiO2: is UV Solar Dose An Appropriate Parameter for Standardization of Water Solar Disinfection?
,”
Sol. Energy
0038-092X,
77
, pp.
635
648
.
12.
Chick
,
H.
, 1908, “
An Investigation Into the Laws of Disinfection
,”
J. Hyg. (Lond)
0022-1724,
8
, pp.
92
158
.
13.
Salih
,
F. M.
, 2003, “
Formulation of a Mathematical Model to Predict Solar Water Disinfection
,”
Water Res.
0043-1354,
37
, pp.
3921
3927
.
14.
Sunada
,
K.
,
Watanabe
,
T.
, and
Hashimoto
,
K.
, 2003, “
Studies on Photokilling of Bacteria on TiO2 Thin Film
,”
J. Photochem. Photobiol., A
1010-6030,
156
, pp.
227
233
.
15.
Fenner
,
R. A.
, and
Komvuschara
,
K.
, 2005, “
A New Kinetic Model for Ultraviolet Disinfection of Greywater
,”
J. Environ. Eng.
0733-9372,
131
, pp.
850
864
.
16.
Sommer
,
B.
,
Mariño
,
A.
,
Solarte
,
Y.
,
Salas
,
M. L.
,
Dierolf
,
C.
,
Valiente
,
C.
,
Mora
,
D.
,
Reichsteiner
,
R.
,
Setter
,
P.
,
Wirojanagud
,
W.
,
Ajarmeh
,
H.
,
Al-Hassan
,
A.
, and
Wegelin
,
M.
, 1997, “
SODIS-An Emerging Water Treatment Process
,”
J. Water Supply: Res. Technol.-AQUA
,
46
, pp.
127
137
.
17.
Salih
,
F. M.
, 2002, “
Enhancement of Solar Inactivation of Escherichia Coli by Titanium Dioxide Photocatalytic Oxidation
,”
J. Appl. Microbiol.
1364-5072,
92
, pp.
920
926
.
18.
Ibáñez
,
J. A.
,
Litter
,
M. I.
, and
Pizarro
,
R. A.
, 2003, “
Photocatalytic Bactericidal Effect of TiO2 on Enterobacter Cloacae: Comparative Study with Other Gram (-) Bacteria
,”
J. Photochem. Photobiol., A
1010-6030,
157
, pp.
81
85
.
19.
Kehoe
,
S. C.
,
Barer
,
M. R.
,
Devlin
,
L. O.
, and
McGuigan
,
K. G.
, 2004, “
Batch Process Solar Disinfection is an Efficient Means of Disinfecting Water Contaminated With Shigella Dysenteriae Type I
,”
Lett. Appl. Microbiol.
0266-8254,
38
, pp.
410
414
.
20.
Reed
,
R. H.
, 2004, “
The Inactivation of Microbes by Sunlight: Solar Disinfection as a Water Treatment Process
,”
Adv. Appl. Microbiol.
0065-2164,
54
, pp.
333
365
.
21.
Rincón
,
A. G.
, and
Pulgarin
,
C.
, 2004, “
Bactericidal Action of Illuminated TiO2 on Pure E. Coli and Natural Bacterial Consortia: Post-Irradiation Events in the Dark and Assessment of the Effective Disinfection Time
,”
Appl. Catal., B
0926-3373,
49
, pp.
99
112
.
22.
Walker
,
D. C.
,
Len
,
S-V.
, and
Sheehan
,
B.
, 2004, “
Development and Evaluation of a Reflective Solar Disinfection Pouch for the Treatment of Drinking Water
,”
Appl. Environ. Microbiol.
0099-2240,
70
, pp.
2545
2550
.
23.
Barker
,
J.
, and
Brown
,
M. R. W.
, 1994, “
Trojan Horses of the Microbial World: Protozoa and the Survival of Bacterial Pathogens in the Environment
,”
Microbiology
1350-0872,
140
, pp.
1253
1259
.
24.
Axelsson-Olsson
,
F.
,
Waldenström
,
J.
,
Broman
,
T.
,
Olsen
,
B.
, and
Holmberg
,
M.
, 2005, “
Protozoan Acanthamoeba Polyphaga as a Potential Reservoir for Camplylobacter Jejuni
,”
Appl. Environ. Microbiol.
0099-2240,
71
, pp.
987
992
.
25.
Thom
,
S. W. D.
, and
Drasar
,
B. S.
, 1992, “
Association of Vibrio Cholerae With Fresh Water Amoebae
,”
J. Med. Microbiol.
0022-2615,
36
, pp.
303
306
.
26.
Méndez-Hermida
,
F.
,
Castro-Hermida
,
J. A.
,
Ares-Mazás
,
E.
,
Kehoe
,
S. C.
, and
McGuigan
,
K. G.
, 2005, “
Effect of Batch-Process Solar Disinfection on Survival of Cryptosporidium Parvum Oocysts in Drinking Water
,”
Appl. Environ. Microbiol.
0099-2240,
71
, pp.
1653
1654
.
27.
Caslake
,
L. F.
,
Connolly
,
D. J.
,
Menon
,
V.
,
Duncanson
,
C. M.
,
Rojas
,
R.
, and
Tavakoli
,
J.
, 2004, “
Disinfection of Contaminated Water by Using Solar Irradiation
,”
Appl. Environ. Microbiol.
0099-2240,
70
, pp.
1145
1150
.
28.
Rincón
,
A. G.
, and
Pulgarin
,
C.
, 2003, “
Photocatalytic Inactivation of E. Coli: Effect of (Continuous-Intermittent) Light Intensity and of (Suspended-Fixed) TiO2 Concentration
,”
Appl. Catal., B
0926-3373,
44
, pp.
263
284
.
29.
APHA
, 1999, Standard Methods for the Examination of Water and Wastewater,
20th ed.
American Public Health Association
,
Washington, DC
.
30.
Cairncross
,
S.
, and
Feachem
,
R. G.
, 1993,
Environmental Health Engineering in the Tropics: An Introductory Text
,
2nd ed.
,
Wiley
,
England
.
31.
Sansonetti
,
P.
, 1999, “
Shigella Plays Dangerous Games
,”
ASM News
0044-7897,
65
, pp.
611
617
.
32.
Cloete
,
T. E.
,
Rose
,
J.
,
Nel
,
L. H.
, and
Ford
,
T.
, 2004,
Microbial Waterborne Pathogens
,
IWA Publishing
,
London
.
33.
Matsunaga
,
T.
,
Tomada
,
R.
,
Nakajima
,
T.
, and
Wake
,
H.
, 1985, “
Photoelectrochemical Sterilization of Microbial Cells by Semiconductor Powders
,”
FEMS Microbiol. Lett.
0378-1097,
29
, pp.
211
214
.
34.
Saito
,
T.
,
Iwase
,
T.
,
Horie
,
J.
, and
Morioka
,
T.
, 1992, “
Mode of Photocatalytic Bactericidal of Powdered Semiconductor TiO2 on Mutans Streptococci
,”
J. Photochem. Photobiol., B
1011-1344,
14
, pp.
369
379
.
35.
Block
,
S. S.
,
Seng
,
V. P.
, and
Goswani
,
D. W.
, 1997, “
Chemically Enhanced Sunlight for Killing Bacteria
,”
ASME J. Sol. Energy Eng.
0199-6231,
119
, pp.
85
91
.
36.
Pham
,
H. N.
,
Wilkins
,
E.
,
Heger
,
A. S.
, and
Kauffman
,
D.
, 1997, “
Quantitative Analysis of Variations in Initial Bacillus Pumilus Spore Densities in Aqueous TiO2 Suspension and Design of a Photocatalytic Reactor
,”
J. Environ. Sci. Health, Part A: Toxic/Hazard. Subst. Environ. Eng.
1093-4529,
A32
, pp.
153
163
.
37.
Blake
,
D. M.
,
Maness
,
P. C.
,
Huang
,
Z.
,
Wolfrum
,
J.
, and
Huang
,
J.
, 1999, “
Application of the Photocatalytic Chemistry of Titanium Dioxide to Disinfection and the Killing of Cancer Cells
,”
Sep. Purif. Methods
0360-2540,
28
, pp.
1
50
.
38.
Dunlop
,
P. S. M.
,
Byrne
,
J. A.
,
Manga
,
N.
, and
Eggins
,
B. R.
, 2002, “
The Photocatalytic Removal of Bacterial Pollutants From Drinking Water
,”
J. Photochem. Photobiol., A
1010-6030,
148
, pp.
355
363
.
39.
Konstantinou
,
I. K.
, and
Albanis
,
T. A.
, 2003, “
Photocatalytic Transformation of Pesticides in Aqueous Titanium Dioxide Suspensions Using Artificial and Solar Light: Intermediates and Degradation Pathways
,”
Appl. Catal., B
0926-3373,
42
, pp.
319
335
.
40.
Robert
,
D.
, and
Malato
,
S.
, 2002, “
Solar Photocatalysis: A Clean Process for Water Detoxification
,”
Sci. Total Environ.
0048-9697,
291
, pp.
85
97
.
41.
Watts
,
R. J.
,
Kong
,
S.
,
Orr
,
M. P.
,
Miller
,
G. C.
, and
Henry
,
B. E.
, 1994, “
Photocatalytic Inactivation of Coliform Bacteria and Viruses in Secondary Effluent
,”
Water Res.
0043-1354,
29
, pp.
95
100
.
42.
Wei
,
C.
,
Lin
,
W-Y.
,
Zainal
,
Z.
,
Williams
,
N. E.
,
Zhu
,
K.
,
Kruzic
,
A. P.
,
Smith
,
R. L.
, and
Rajeshwar
,
K.
, 1994, “
Bactericidal Activity of TiO2 Photocatalyst in Aqueous Media: Toward a Solar-Assisted Water Disinfection System
,”
Environ. Sci. Technol.
0013-936X,
28
, pp.
934
938
.
43.
Duffy
,
E. F.
,
Al Touati
,
F.
,
Kehoe
,
S. C.
,
McLoughlin
,
O. A.
,
Gill
,
L. W.
,
Gernjak
,
W.
,
Oller
,
I.
,
Maldonado
,
M. I.
,
Malato
,
S.
,
Cassidy
,
J.
,
Reed
,
R. H.
, and
McGuigan
,
K. G.
, 2004, “
A Novel TiO2-Assisted Solar Photocatalytic Batch-Process Disinfection Reactor for the Treatment of Biological and Chemical Contaminants in Domestic Drinking Water in Developing Countries
,”
Sol. Energy
0038-092X,
77
, pp.
649
655
.
44.
Wist
,
J.
,
Sanabria
,
J.
,
Dierolf
,
C.
,
Torres
,
W.
, and
Pulgarin
,
C.
, 2002, “
Evaluation of Photocatalytic Disinfection of Crude Water for Drinking-Water Production
,”
J. Photochem. Photobiol., A
1010-6030,
147
, pp.
241
246
.
45.
EAWAG, SODIS Technical Notes, available from: http://www.sodis.chhttp://www.sodis.ch
46.
Russell
,
A. P.
, 2003, “
Lethal Effects of Heat on Bacterial Physiology and Structure
,”
Sci. Prog.
0036-8504,
86
, pp.
115
137
.
47.
Safapour
,
N.
, and
Metcalf
,
R. H.
, 1999, “
Enhancement of Solar Water Pasteurisation with Reflectors
,”
Appl. Environ. Microbiol.
0099-2240,
65
, pp.
859
861
.
48.
Joyce
,
T. M.
,
McGuigan
,
K. G.
,
Elmore-Meegan
,
M.
, and
Conroy
,
R. M.
, 1996, “
Inactivation of Faecal Bacteria in Drinking Water by Solar Heating
,”
Appl. Environ. Microbiol.
0099-2240,
62
, pp.
399
402
.
You do not currently have access to this content.