The knowledge of the absorber surface temperature distribution is essential for efficient operation and further development of solar thermal high temperature receivers. However, the concentrated solar radiation makes it difficult to determine the temperature on irradiated surfaces. Contact thermometry is not appropriate and pyrometric measurements are distorted by the reflected solar radiation. The measurement in solar-blind spectral ranges offers a possible solution by eliminating the reflected solar radiation from the measurement signal. The paper shows that besides the incoming solar radiation and the absorber emittance, the bi-directional reflection properties and the temperature of the object are determining for the required selectivity of the spectral filter. Atmospheric absorption affects the solar blind pyrometric measurements in absorption bands of CO2 and water vapor. The deviation of temperature measurement due to atmospheric absorption is quantified and the possibilities and limitations of accounting for the atmospheric absorption with models based on radiation transfer calculations are discussed.

1.
Tschudi
,
H. R.
, and
Schubnell
,
M.
, 1999, “
Measuring Temperatures in the Presence of External Radiation by Flash Assisted Multiwavelength Pyrometry
,”
Rev. Sci. Instrum.
0034-6748,
70
, pp.
2719
2727
.
2.
Conn
,
W. N.
, and
Braught
,
G.
, 1954, “
Separation of Incident and Emitted Radiation in a Solar Furnace by Means of Rotating Sectors
,”
J. Opt. Soc. Am.
0030-3941,
44
, pp.
45
47
3.
Rohner
,
N.
, and
Neumann
,
A.
, 2003, “
Measurement of High Thermodynamic Temperatures in the DLR Solar Furnace by UV-B Detection
,”
ASME J. Sol. Energy Eng.
0199-6231,
125
, pp.
152
158
.
4.
Tschudi
,
H. R.
, and
Morian
,
G.
, 2001, “
Pyrometric Temperature Measurements in Solar Furnaces
,”
ASME J. Sol. Energy Eng.
0199-6231,
123
, pp.
164
170
.
5.
Hernandez
,
D.
,
Olalde
,
G.
,
Gineste
,
J. M.
, and
Gueymard
,
C.
, 2004, “
Analysis and Experimental Results of Solar-Blind Temperature Measurements in Solar Furnaces
,”
ASME J. Sol. Energy Eng.
0199-6231,
126
, pp.
645
653
.
6.
Efimov
,
A. M.
,
Pogareva
,
V. G.
, and
Shashkin
,
A. V.
, 2003, “
Water-Related Bands in the IR Absorption Spectra of Silicate Glasses
,”
J. Non-Cryst. Solids
0022-3093,
332
(
1–3
), pp.
93
114
.
7.
Nicodemus
,
F. E.
,
Richmond
,
J. C.
,
Hsia
,
J. J.
,
Ginsberg
,
J. W.
, and
Limperis
,
T.
, 1977, “
Geometrical Considerations and Nomenclature for Reflectance
,” National Bureau of Standards, Stock-No. 003-003-01793.
8.
Pfänder
,
M.
, and
Lüpfert
,
E.
, 2004, “
Infrared Temperature Measurement Solar Trough Absorber Tubes
,”
Proceedings of the 12th SolarPACES International Symposium
, Oaxaca, Mexico, Oct. 6–8.
9.
Gueymard
,
C.
, 1995, “
SMARTS, Simple Model of the Atmospheric Radiative Transfer of Sunshine: Algorithms and Performance Assessment
,” Rep. FSEC-PF-270-95, Florida Solar Energy Centre, Cocoa, FL.
10.
Quine
,
B. M.
, and
Drummond
,
J. R.
, 2002, “
GENSPECT: A Line-by-Line Code with Selectable Interpolation Error Tolerance
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
74
, pp.
147
165
.
11.
Rothman
,
L. S.
,
et al.
, 2005, “
The HITRAN 2004 Molecular Spectroscopic Database
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073
96
, pp.
139
204
.
12.
Mlawer
,
E. J.
,
Tobin
,
D. C.
, and
Clough
,
S. A.
, 2004, “
A Revised Perspective on the Water Vapor Continuum: The MT_̱CKD Model
,” in preparation.
13.
Chrzanowski
,
K.
, 1995, “
Comparison of Shortwave and Longwave Measuring Thermal-Imaging Systems
,”
Appl. Opt.
0003-6935,
34
, pp.
2888
2896
.
14.
DeWitt
,
D. P.
, and
Nutter
,
G. D.
, 1988,
Theory and Practice of Radiation Thermometry
,
Wiley Interscience
,
New York
.
15.
Lüpfert
,
E.
,
Neumann
,
A.
,
Riffelmann
,
K.-J.
, and
Ulmer
,
S.
, 2004, “
Comparative Flux Measurement and Raytracing for the Characterization of the Focal Region of Solar Parabolic Trough Collectors
,” ASME 2004, Portland, OR, ISEC2004–65157.
You do not currently have access to this content.