In Spain, as in other Mediterranean and low-latitude countries, cooling loads of the same order of magnitude or even higher than heating loads coexist with high solar radiation resources. Cooling loads in most of these countries have, thus far, not been completely incorporated into the building sector energy demand because they arise after that DHW (domestic hot water) and heating loads have been satisfied and the living standard of the population reaches a given threshold. The increasing comfort demand in the cooling season from a population living in buildings that were developed without taking into account these considerations are bringing about a strong increase in the installation of domestic vapor compression air conditioning units, aimed to partially fulfil the thermal comfort demand in few rooms of these dwellings. This has a significant impact on the environment and the electricity distribution system, in a moment when strong environmental constraints are being imposed on the energy system to fulfil international agreements as the Kyoto protocol. Solar absorption cooling emerges as an interesting alternative to satisfy this growing energy demand for cooling applications with synergies with solar energy use for heating and DHW purposes. However, solar absorption cooling has been there already, for decades, without having a significant development, and still today presents some limitations that prevent its widespread application. Other solar cooling alternatives, such as the use of commercial vapor compression air conditioning equipment fed with electricity from centralized solar power plants could, in short, become available in these countries. In this paper, based on the experienced gained with the simulation of the most recent installations of absorption cooling installations in Spain, we perform a cost comparison between decentralized and centralized solar cooling options to give some insight into the development requirements and possibilities from both solar cooling options.

1.
Commission of the European Communities, 2000, “
Green Paper: Towards a European Strategy for the Security of Energy Supply
,” Brussels, 29/11/2000, COM(2000) 769 final.
2.
IDAE, 2004, Boletín del IDAE No. 6.
3.
Ministerio de Industria y Energía, IDAE, 1999, Plan de Fomento de las Energías Renovables en España.
4.
European Solar Thermal Industry Federation (ESTIF), 2003, Sun in Action II: A Solar Thermal Strategy for Europe.
5.
Santamouris
,
M.
, and
Asimakopoulos
,
D.
, eds. 1996,
Passive cooling of Buildings
,
James & James
, London.
6.
Dunkle
,
R. V.
, 1965, “
A Method of Solar Air Conditioning
,”
Mech. Chem. Eng. Trans.
,
73
.
7.
Jurinak
,
J. J.
,
Mitchell
,
J. W.
, and
Beckman
,
W. A.
, 1984, “
Open-Cycle Desiccant Air Conditioning as an Alternative to Vapour Compression Cooling in Residential Applications
,”
ASME J. Sol. Energy Eng.
0199-6231,
106
, p.
252
.
8.
Tabor
,
H. Z.
, 1962, “
Solar Energy for Cooling Purposes
,”
ASME J. Sol. Energy Eng.
0199-6231,
VI
(
2
), pp.
136
141
.
9.
Chung
,
R.
,
Duffie
,
J. A.
, and
Löf
,
G. O. G.
, 1963, “
A Study of a Solar Air Conditioner
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
0025-6501,
85
, p.
31
.
10.
Duffie
,
J. A.
, and
Sheridan
,
N. R.
, 1965, “
Lithium Bromide—Water Refrigerator for Solar Operation
,”
Mech. Chem. Eng. Trans.
,
79
.
11.
Butz
,
L. W.
,
Beckman
,
W. A.
, and
Duffie
,
J. A.
, 1974, “
Simulation of a Solar Heating and Cooling System
,”
Sol. Energy
0038-092X,
16
, p.
129
.
12.
Tabor
,
H. Z.
, 1982, “
Utilizarion of Solar Energy for Refrigeration and Air-Conditioning
,” Int. Inst. of Refrig., Com. E.1, E.2, Jerusalem.
13.
Oonk
,
R. L.
,
Beckman
,
W. A.
, and
Duffie
,
J. A.
, 1975, “
Modelling of the CSU Heating/Cooling System
,”
Sol. Energy
0038-092X,
17
, p.
21
.
14.
Ward
,
D. S.
, and
Löf
,
G. O. G.
, 1975, “
Design and Construction of a Residential Solar Heating and Cooling System
,”
Sol. Energy
0038-092X,
17
, p.
13
.
15.
Karaki
,
S.
,
Brisbane
,
E.
, and
Löf
,
G. O. G.
, 1984, “
Performance of the Solar Heating and Cooling System for the CSU House. III: Summer Season 1983 and Winter Season 1983–84
,”
Colorado State University
Report No. SAN 11927-15 to US Department of Energy.
16.
Mitchell
,
J. W.
, 1986, “
State of the Art of Active Solar Cooling
,”
Proc. of 1986 Annual Mtg.
,
Am. Solar Energy Soc.
,
Boulder, CO
, p.
63
.
17.
Yeung
,
M. R.
,
Yuen
,
P. K.
,
Dunn
, and
A.
,
Cornish
,
L. S.
, 1992, “
Performance of a Solar-Powered Air-Conditioning System in Hong Kong
,”
Sol. Energy
0038-092X,
48
, pp.
309
319
.
18.
Sumathy
,
K.
,
Huang
,
Z. C.
, and
Li
,
F.
, 2002, “
Solar Absorption Cooling With Low Grade Heat Source: A Strategy of Development in South China
,”
Sol. Energy
0038-092X,
72
(
2
), pp.
155
165
.
19.
Grossman
,
G.
, 2002, “
Solar-Powered Systems for Cooling, Dehumidification and Air-Conditioning
,”
Sol. Energy
0038-092X,
72
(
1
), pp.
53
62
.
20.
Izquierdo
,
M.
,
Hernández
,
F.
, and
Martín
,
E.
, 1994, “
Solar Cooling in Madrid: Available Solar Energy
,”
Sol. Energy
0038-092X,
53
, pp.
431
443
.
21.
Izquierdo
,
M.
,
Hernández
,
F.
, and
Martín
,
E.
, 1997, “
Solar Cooling in Madrid: Energetic Efficiencies
,”
Sol. Energy
0038-092X,
60
, pp.
367
377
.
22.
Ajona-Maeztu
,
J. I.
, 2003, “
Aprovechando el Calor del Sol Para Climatizar Nuestros Edificios
,” Climatización 2003, Madrid, 26/2-1/3.
23.
Garcia-Casals
,
X.
, 2002, “
Simulación Dinámica, Evaluación de Actuaciones y Optimización de la Instalación de Climatización (Calefacción y Refrigeración) con Energía Solar y Máquina de Absorción del Laboratorio Tecnológico Regional de Murcia
,” Informe Interno del Instituto de Investigaciones Tecnológicas, IIT-02–085I.
24.
García-Casals
,
X.
, 2004, “
Simulación Dinámica de Instalaciones Solares de Climatización (Calefacción y Refrigeración): Instalación de Climatización Solar con Máquina de Absorción y Bomba de Calor de la Consejería de Medio Ambiente de la Junta de Andalucía
,” Informe interno del Instituto de Investigaciones Tecnológicas, IIT-04–003IC.
25.
García-Casals
,
X.
, 2004, “
Simulation of Solar Heating & Cooling Instalations in Spain
,” III International TRNSYS User’s Day, Barcelona, March.
26.
Duff
,
W. S.
,
Winston
,
R.
,
O’Gallagher
,
J. J.
,
Henkel
,
T.
,
Muschaweck
,
J.
,
Christiansen
,
R.
, and
Bergquam
,
J.
, 1999, “
Demonstration of a New Type of ICPC in a Double Effect Absorption Cooling System
,”
Proceedings of 1999 ISES Solar World Congress
, Jerusalem, July 4–9, Elsevier Science Ltd., Oxford, Vol.
III
, pp.
424
428
.
27.
Krüger
,
D.
,
Pitz-Paal
,
R.
,
Lokurlu
,
A.
, and
Richarts
,
F.
, 2002, “
Solar Cooling and Heating With Parabolic Trough Collectors for a Hotel in the Mediterranean
,”
Proceedings of 11th SolarPaces International Symposium on Concentrated Solar Power and Chemical Energy Technologies
, Sept. 4–6, Zurcich, Paul Scherrer Institut, Viligen, pp.
83
89
.
28.
Duffie
,
J. A.
, and
Beckman
,
W. A.
, 1991,
Solar Engineering of Thermal Processes
,
Wiley
,
New York
, pp.
588
606
.
29.
Zinian
,
H.
, and
Ning
,
Z.
, 1999, “
A Solar Absorption Air-Conditioning Plant Using Heat-Pipe Evacuated Tubular Collectors
,”
Proceedings of 1999 ISES Solar World Congress
, Jerusalem, July 4–9, Elsevier Science Ltd., Oxford, Vol.
III
, pp.
297
304
.
30.
Trieb
,
F.
, 1998, “
Competitive Solar Thermal Power Stations Until 2010: The Challenge of Market Introduction
,” 9th International Symposium on Solar Thermal Concentrating Technologies, Odeillo, June.
31.
Kolb
,
G.
, 1998, “
Economic Evaluation of Solar-Only and Hybrid Power Towers Using Molten Salt Technology
,”
Sol. Energy
0038-092X,
62
(
1
), pp.
51
61
.
32.
Greenpeace, ESTIA, 2004, Energía Solar Termoeléctrica 2020: Pasos Firmes Contra el Cambio Climático.
33.
García-Casals
,
X.
, 2004. Generación de Electricidad con Centrales Termosolares: Ya va Siendo Hora,” ERA SOLAR, No. 122.
You do not currently have access to this content.