Solar energy can be stored chemically by using concentrated solar irradiation as an energy source for carbothermic ZnO reduction. The produced Zn might be used for the production of electricity in Zn-air fuel cells or of H2 by splitting water. In either case the product is again ZnO which can be reprocessed in the solar process step. This innovative concept will be scaled up to 300kW solar input power within the so-called SOLZINC-project. In this paper we report on experimental results obtained with a two cavity reactor operated at solar power inputs of 3-8kW in a solar furnace. The objective was to generate input data which are necessary for designing the scaled up reactor, such as the effect of process temperature (1100-1300°C) and carrier gas (N2 and CO) on the overall reaction rate. Furthermore, construction materials were tested and a variety of carbonaceous materials were screened for their use as reducing agents by means of thermogravimetric measurements. As a result, beech charcoal was chosen as the standard reducing agent.

1.
Iliev
,
Kaisheva
,
A.
,
Stoynov
,
Z.
, and
Pauling
,
H. J.
, 1997, “
Mechanically Rechargeable Zinc-Air Cells
,” Battery Recycling ’97, Noordwijk (Netherlands) July 1–4.
2.
Möller
,
S.
,
Palumbo
,
R.
, 2001, “
Solar Thermal Decomposition Kinetics of ZnO in the Temperature Range 1950-2400K
,”
Chem. Eng. Sci.
0009-2509,
56
, pp.
4505
4515
.
3.
Palumbo
,
R.
,
Lede
,
J.
,
Boutin
,
O.
,
Elorza Ricart
,
E.
,
Steinfeld
,
A.
,
Möller
,
S.
,
Weidenkaff
,
A.
,
Fletcher
,
E. A.
, and
Bielicki
,
J.
, 1998, “
The Production of Zn From ZnO in a Single Step High Temperature Solar Decomposition Process
,”
Chem. Eng. Sci.
0009-2509,
53
, pp.
2503
2518
.
4.
Möller
,
S.
, and
Palumbo
,
R.
, 2001, “
The Development of a Solar Chemical Reactor for the Direct Thermal Dissociation of Zinc Oxide
,”
ASME J. Sol. Energy Eng.
0199-6231,
123
, pp.
83
90
.
5.
Keunecke
,
M.
, 2004, “
Die solarthermische Dissoziation von Zinkoxid: Experimentelle Untersuchung und Modellierung der Rückreaktion
,” Dissertation, Universität Augsburg.
6.
Keunecke
,
M.
,
Meier
,
A.
, and
Palumbo
,
R.
, 2004, “
Solar Thermal Decomposition of Zinc Oxide: An Initial Investigation of the Recombination Reaction in the Temperature Range 1100-1250K
,”
Chem. Eng. Sci.
0009-2509,
59
(
13
), pp.
2695
2704
.
7.
Weidenkaff
,
A.
,
Steinfeld
,
A.
,
Wokaun
,
A.
,
Eichler
,
B.
, and
Reller
,
A.
, 1999, “
The Direct Solar Thermal Dissociation of ZnO: Condensation and Crystallisation of Zinc in the Presence of Oxygen
,”
Sol. Eng.
0363-6003,
65
, pp.
59
69
.
8.
Lédé
,
J.
,
Elorza-Ricart
,
E.
, and
Ferrer
,
M.
, 2001, “
Solar Thermal Splitting of Zinc Oxide: A Review of Some of the Rate Controlling Factors
,”
ASME J. Sol. Energy Eng.
0199-6231,
123
, pp.
91
97
.
9.
Kräupl
,
S.
, and
Steinfeld
,
A.
, 2003, “
Operational Performance of a 5kW Solar Chemical Reactor for the Co-Production of Zinc and Syngas
,”
ASME J. Sol. Energy Eng.
0199-6231,
125
, pp.
124
126
.
10.
Kräupl
,
S.
, and
Steinfeld
,
A.
, 2001, “
Experimental Investigation of a Vortex-Flow Solar Chemical Reactor for the Combined ZnO-Reduction and CH4-Reforming
,”
ASME J. Sol. Energy Eng.
0199-6231,
123
, pp.
237
243
.
11.
Kräupl
,
S.
, and
Steinfeld
,
A.
, 2001, “
Pulsed Gas Feeding for Stoichiometric Operation of a Gas-Solid Vortex Flow Solar Chemical Reactor
,”
ASME J. Sol. Energy Eng.
0199-6231,
123
, pp.
133
137
.
12.
Steinfeld
,
A.
,
Brack
,
M.
,
Meier
,
A.
,
Weidenkaff
,
A.
, and
Wuillemin
,
D.
, 1998, “
A Solar Chemical Reactor for the Co-Production of Zinc and Synthesis Gas
,”
Energy
0360-5442,
23
(
10
), pp.
803
814
.
13.
Wieckert
,
C.
, and
Steinfeld
,
A.
, 2002, “
Solar Thermal Reduction of ZnO using CH4:ZnO and C:ZnO Molar Ratios Less than 1
,”
ASME J. Sol. Energy Eng.
0199-6231,
124
, pp.
55
62
.
14.
Osinga
,
T.
,
Frommherz
,
U.
,
Steinfeld
,
A.
, and
Wieckert
,
C.
, 2004, “
Experimental Investigation of the Solar Carbothermic Reduction of ZnO Using a Two-Cavity Solar Reactor
,”
ASME J. Sol. Energy Eng.
0199-6231,
126
, pp.
633
637
.
15.
Adinberg
,
R.
, and
Epstein
,
M.
, 2002, “
Experimental Study of Solar Reactors for Carboreduction of ZnO
,”
Proceedings of 11th SolarPaces Int. Symposium
, Sept. 4–6, Zurich, pp.
277
286
.
16.
Berman
,
A.
, and
Epstein
,
M.
, 1999, “
The Kinetic Model for Carboreduction of Zinc Oxide
,”
J. Phys. IV
1155-4339,
9
,
319
324
.
17.
Lédé
,
J.
,
Boutin
,
O.
,
Elorza-Ricart
,
E.
,
Ferrer
,
M.
, and
Mollard
,
F.
, 2001, “
Production of Zinc From the Reduction of ZnO in the Presence of Cellulose in a Solar Simulator
,”
ASME J. Sol. Energy Eng.
0199-6231,
123
, pp.
102
108
.
18.
N.
A.
, 2001, “
Sachbilanz Zink
,”
Institut für Metallhüttenkunde und Elektrometallurgie
, RWTH Aachen (Germany).
19.
Graf
,
G.
, 1996, Zinc, in
Ullmann’s Encyclopedia of Industrial Chemistry
,
VCH Verlagsgesellschaft
,
Weinheim
, Germany, Vol.
A28
, pp.
509
530
.
20.
Wieckert
,
C.
,
Palumbo
,
R.
, and
Frommherz
,
U.
, 2004, “
Solar Reduction of ZnO With Solid Carbon Materials: Investigations on 5-10kW scale
,”
Energy
0360-5442,
29
, pp.
771
787
.
21.
Bruesewitz
,
M.
,
Semrau
,
G.
,
Epstein
,
M.
,
Vishnevetsky
,
I.
,
Frommherz
,
U.
,
Kräupl
,
S.
,
Palumbo
,
R.
,
Wieckert
,
C.
,
Olalde
,
G.
,
Robert
,
J.-F.
,
Osinga
,
T.
,
Steinfeld
,
A.
, and
Santén
,
S.
, 2003, “
Solar Carbothermic Production of Zinc and Power Production Via a ZnO–Zn-cyclic Process
,”
Proceedings of ISES 2003
, Gothenburg, June 14–19.
22.
Yogev
,
A.
,
Kribus
,
A.
,
Epstein
,
M.
, and
Kogan
,
A.
, 1998, “
Solar Tower Reflector Systems: A New Approach for High-Temperature Solar Plants
,”
Int. J. Hydrogen Energy
0360-3199,
23
, pp.
239
245
.
23.
Wieckert
,
C.
,
Meier
,
A.
, and
Steinfeld
,
A.
, 2003, “
Indirectly Irradiated Solar Receiver Reactors for High-Temperature Thermochemical Processes
,”
ASME J. Sol. Energy Eng.
0199-6231,
125
, pp.
120
123
.
24.
Haueter
,
P.
,
Seitz
,
T.
, and
Steinfeld
,
A.
, 1999, “
A New High-Flux Solar Furnace for High-Temperature Thermochemical Research
,”
ASME J. Sol. Energy Eng.
0199-6231,
121
, pp.
77
80
.
25.
Röthlisberger
,
T.
, 2002, “
Thermographimetrische Analyse des Zinkoxid—Kohle Prozesses
,” semester Thesis, ETH Zurich.
26.
Barin
,
I.
, 1995,
Thermochemical Data of pure Substance
,
3rd ed.
,
VCH Verlagsgesellschaft
,
Weinheim
, Germany.
27.
Wieckert
,
C.
,
Frommherz
,
U.
, and
Kräupl
,
S.
, 2003, “
Upscaling of a Solar Reactor For Carbothermic Reduction of ZnO: Design Studies With a Simple Radiative Heat Exchange Model
,” PSI Annual Report—Annex V, pp.
45
46
.
28.
Frommherz
,
U.
,
Kräupl
,
S.
,
Wieckert
,
C.
,
Epstein
,
M.
,
Guillot
,
E.
,
Olalde
,
G.
,
Osinga
,
T.
,
Palumbo
,
R.
,
Robert
,
J. F.
,
Santen
,
S.
,
Semrau
,
G.
,
Steinfeld
,
A.
, and
Vishnevetsky
,
I.
, 2004, “
Design of a Pilot Scale Solar Reactor for the Carbothermic Reduction of ZnO
,”
Proceedings 12th Solar PACES International Symposium
, October 6–8, Oaxaca, Mexico.
29.
Osinga
,
T.
,
Olalde
,
G.
, and
Steinfeld
,
A.
, 2004, “
The Solar Carbothermal Reduction of ZnO—Shrinking Packed-bed Reactor Modeling and Experimental Validation
,”
Ind. Eng. Chem. Res.
0888-5885,
43
, pp.
7981
7988
.
30.
Wieckert
,
C.
, 2005, “
Design Studies for a Solar Reactor Based on a Simple Radiative Heat Exchange Model
,”
ASME J. Sol. Energy Eng.
0199-6231,
127
, pp.
425
429
.
You do not currently have access to this content.