A high-temperature solar chemical reactor for the processing of solids is scaled up from a laboratory scale (5kW concentrated solar power input) to a pilot scale (200kW). The chosen design features two cavities in series: An upper cavity has a small aperture to let in concentrated solar power coming from the top. It serves as the solar receiver, radiant absorber, and radiant emitter to a lower cavity. The lower cavity is a well-insulated enclosure. It is subjected to thermal radiation from the upper cavity and serves in our application as the reaction chamber for a mixture of ZnO and carbon. Important insight for the definition of the geometrical parameters of the pilot reactor has been generated by a radiation heat transfer analysis based on the radiosity enclosure theory. The steady-state model accounts for radiation heat transfer within the solar reactor including reradiation losses through the reactor aperture, wall losses due to thermal conduction and heat consumption by the endothermic chemical reaction. Key results include temperatures of the different reactor walls and the thermal efficiency of the reactor as a function of the major geometrical and physical parameters. The model, hence, allows for a fast estimate of the influence of these parameters on the reactor performance.

1.
Wieckert
,
C.
,
Palumbo
,
R.
, and
Frommherz
,
U.
, 2004, “
Solar reduction of ZnO with solid carbon materials: Investigations on 5-10kW scale
,”
Energy
0360-5442,
29
, pp.
771
787
.
2.
Adinberg
,
R.
, and
Epstein
,
M.
, 2004, “
Experimental study of solar reactors for carboreduction of zinc oxide
,”
Energy
0360-5442,
29
, pp.
757
769
.
3.
Steinfeld
,
A.
, and
Palumbo
,
R.
, 2001, “
Solar Thermal Process Technology
,”
Encyclopedia of Physical Science and Technology
, edited by
R. A.
Meyers
,
Academic Press
, New York, Vol.
15
, pp.
237
256
.
4.
Bruesewitz
,
M.
,
Semrau
,
G.
,
Epstein
,
M.
,
Vishnevetsky
,
I.
,
Frommherz
,
U.
,
Kräupl
,
S.
,
Palumbo
,
R.
,
Wieckert
,
C.
,
Olalde
,
G.
,
Robert
,
J.-F.
,
Osinga
,
T.
,
Steinfeld
,
A.
, and
Santén
,
S.
, 2003, “
Solar carbothermic production of Zn and power production via a ZnO–Zn cyclic process
,”
Proc. ISES Solar World Congress 2003 “Solar Energy for a Sustainable Future
,” Gothenburg, Sweden.
5.
Osinga
,
T.
,
Frommherz
,
U.
,
Steinfeld
,
A.
, and
Wieckert
,
C.
, 2004, “
Experimental investigation of the solar carbothermic reduction of ZnO using a two-cavity solar reactor
,”
ASME J. Sol. Energy Eng.
0199-6231,
126
, pp.
633
637
.
6.
Kräupl
,
S.
,
Frommherz
,
U.
, and
Wieckert
,
C.
, 2004, “
Experimental Investigation of a Two-Cavity Solar Reactor for the Carbothermic Reduction of ZnO
,”
ASME J. Sol. Energy Eng.
0199-6231, (to be published).
7.
Siegel
,
R.
, and
Howell
,
J. R.
, 2002,
Thermal Radiation Heat Transfer
, 4th ed.,
Taylos & Francis
, New York.
8.
Wieckert
,
C.
,
Meier
,
A.
, and
Steinfeld
,
A.
, 2003, “
On Indirectly Irradiated Solar Receiver-Reactors for High-Temperature Thermochemical Processes
,”
ASME J. Sol. Energy Eng.
0199-6231,
125
, pp.
120
123
.
9.
Z’Graggen
,
A.
, and
Steinfeld
,
A.
, 2004, “
Radiative Exchange within a Two-Cavity Configuration with a Spectrally Selective Window
,”
ASME J. Sol. Energy Eng.
0199-6231,
126
, pp.
119
122
.
10.
Yogev
,
A.
,
Kribus
,
A.
,
Epstein
,
M.
, and
Kogan
,
A.
, 1998, “
Solar ‘tower reflector’ systems: A new approach for high-temperature solar plants
,”
Int. J. Hydrogen Energy
0360-3199,
23
, pp.
239
245
.
11.
Graf
,
G.
, 1996, “
Zinc
,” in
Ullmann’s Encyclopedia of Industrial Chemistry
, Vol.
A 28
, VCH Verlagsgesellschaft, pp.
509
530
.
12.
Berman
,
A.
, and
Epstein
,
M.
, 2000, “
The kinetics of hydrogen in the oxidation of liquid zinc with water vapor
,”
Int. J. Hydrogen Energy
0360-3199,
25
, pp.
957
967
.
13.
Frommherz
,
U.
,
Kräupl
,
S.
,
Wieckert
,
C.
,
Epstein
,
M.
,
Guillot
,
E.
,
Olalde
,
G.
,
Osinga
,
T.
,
Palumbo
,
R.
,
Robert
,
J. F.
,
Santen
,
S.
,
Semrau
,
G.
,
Steinfeld
,
A.
, and
Vishnevetsky
,
I.
, 2004, “
Design of a pilot scale solar reactor for the carbothermic reduction of ZnO
,”
submitted to 12th Solar PACES International Symposium, October 6–8 2004
, Oaxaca, Mexico.
You do not currently have access to this content.