This paper presents detailed wind tunnel tests data taken on six airfoils having application to small wind turbines. In particular, lift, drag and moment measurements were taken at Reynolds numbers of 100,000, 200,000, 350,000 and 500,000 for both clean and rough conditions. In some cases, data were also taken at a Reynolds number of 150,000. The airfoils included the E387, FX 63-137, S822, S834, SD2030, and SH3055. Prior to carrying out the tests, wind tunnel flow quality measurements were taken to document the low Reynolds number test environment. Oil flow visualization data and performance data taken on the E387 compare favorably with measurements taken at NASA Langley in the Low Turbulence Pressure Tunnel. Highlights of the performance characteristics of the other five airfoils are presented.

1.
Oerlemans, S., and Migliore, P., 2004, “Wind Tunnel Aeroacoustic Tests on Six Airfoils for Use on Small Wind Turbines,” NREL/SR-500-34470.
2.
Selig, M. S., Guglielmo, J. J., Broeren, A. P., and Gigue`re, P., 1995, Summary of Low-Speed Airfoil Data, SoarTech, Virginia Beach, VA, Vol. 1.
3.
Lyon, C. A., Broeren, A. P., Gigue`re, P., Gopalarathnam, A., and Selig, M. S., 1998, Summary of Low-Speed Airfoil Data, SoarTech, Virginia Beach, VA, Vol. 3.
4.
McGranahan, B. D., and Selig, M. S., 2004, “Wind Tunnel Aerodynamic Tests on Six Airfoils for Use on Small Wind Turbines,” NREL/SR-500-34515.
5.
Guglielmo
,
J. J.
, and
Selig
,
M. S.
,
1996
, “
Spanwise Variations in Profile Drag for Airfoils at Low Reynolds Numbers
,”
J. Aircraft
,
33
, pp.
699
707
.
6.
McGhee, R. J., Walker, B. S., and Millard, B. F., 1988, “Experimental Results for the Eppler 387 Airfoil at Low Reynolds Numbers in the Langley Low-Turbulence Pressure Tunnel,” NASA TM-4062.
7.
Rae, W. H., Jr., and Pope, A., 1984, Low-Speed Wind Tunnel Testing, Wiley, New York. ISBN 0-471-87402-7.
8.
Bragg, M. B., and Lu, B., 2000, “Experimental Investigation of Airfoil Drag Measurement With Simulated Leading-Edge Ice Using the Wake Survey Method,” AIAA Pap. 2000-3919.
9.
Evangelista, R., McGhee, R. J., and Walker, B. S., 1989, “Correlation of Theory to Wind-Tunnel Data at Reynolds Numbers Below 500,000,” Low Reynolds Number Aerodynamics, edited by T. J. Mueller, Lecture Notes in Engineering, Vol. 54, Springer, New York, pp. 131–145. ISBN 3-540-51884-3.
10.
Briley
,
R. W.
, and
McDonald
,
H.
,
1975
, “
Numerical Prediction of Incompressible Separation Bubbles
,”
J. Fluid Mech.
,
69
, pp.
631
656
.
11.
Kwon
,
O. K.
, and
Pletcher
,
R. H.
,
1919
, “
Prediction of Incompressible Separated Boundary Layers Including Viscous-Inviscid Interaction
,”
Trans ASME
,
101
, pp.
466
472
.
12.
Davis, R. L., and Carter, J. E., 1984, “Analysis of Airfoil Transitional Separation Bubbles,” NASA CR-3791.
13.
Walker, G. J., Subroto, P. H., and Platzer, M. F., 1988, “Transition Modeling Effects on Viscous/Inviscid Interaction Analysis of Low Reynolds Number Airfoil Flows Involving Laminar Separation Bubbles,” ASME Paper, 88-GT-32.
14.
Huebsch, W. W., and Rothmayer, A. P., 1998, “The Effects of Small-Scale Surface Roughness on Laminar Airfoil-Scale Trailing Edge Separation Bubbles,” AIAA Pap. 98-0103.
15.
Alam
,
M.
, and
Sandham
,
N. D.
,
2000
, “
Direct Numerical Simulation of ‘Short’ Laminar Separation Bubbles With Turbulent Reattachment
,”
J. Fluid Mech.
,
403
, pp.
223
250
.
16.
Lin
,
J. C. M.
, and
Pauley
,
L. L.
,
1996
, “
Low-Reynolds-Number Separation on an Airfoil
,”
AIAA J.
,
34
, pp.
1570
1577
.
17.
Selig, M. S., Donovan, J. F., and Fraser, D. B., 1989, Airfoils at Low Speeds, Soartech 8, SoarTech, Virginia Beach, VA.
18.
Somers, D. M., 1992, “Subsonic Natural-Laminar-Flow Airfoils,” Natural Laminar Flow and Laminar Flow Control, edited by R. W. Barnwell and M. Y. Hussaini, Springer, New York, pp. 143–176.
19.
Althaus, D., and Wortmann, F. X., 1981, Stuttgarter Profilkatalog I, Friedr. Vieweg & Sohn, Braunschweig/Weisbaden.
20.
Somers, D. M., and Maughmer, M. D., 2003, “Theoretical Aerodynamic Analyses of Six Air-Foils for Use on Small Wind Turbines,” NREL/SR-500-33295.
21.
Vick, B. D., and Clark, R. N., 2000, “Testing of a 2-Kilowatt Wind-Electric System for Water Pumping,” WINDPOWER, Palm Springs, CA.
22.
Broeren, A. P., and Bragg, M. B., 2001, “Unsteady Stalling Characteristics of Thin Airfoils at Low Reynolds Numbers,” Fixed and Flapping Wing Aerodynamics for Micro Air Vehicle Applications, edited by T. J. Mueller, Progress in Astronautics and Aeronautics Vol. 195, AIAA, New York, pp. 191–213.
You do not currently have access to this content.