Despite the existence of several possible pyrometric methodologies, temperature monitoring and control of samples heated at the focus of solar concentrators have still not received a universal and perfect solution. Here we present an analysis of solar-blind conditions and experimental measurements that have been carried out at the Odeillo Solar Furnace (IMP-CNRS). The aim here is to test different experimental configurations that can conceptually eliminate the reflected part of the concentrated solar flux. These configurations would allow near solar-blind measurements within the atmospheric absorption bands centered at 1.4 μm and 1.9 μm, and true solar-blind measurements within similar bands centered at 2.7 μm, 4.3 μm, and 6 μm. The parasitic reflected solar flux can be evaluated for each of these bands. In the case of alumina in particular, true solar-blind measurements can also be performed under blackbody conditions over the 8–12 μm band, and this is taken here as a convenient example of application. It is also demonstrated that solar-blind measurements are possible outside of these absorption bands, either by adding an appropriate radiation cutting filter (e.g., a quartz window) or by using an infrared narrow filter centered in a spectral region where the incident flux is negligible due to reflection losses (e.g., at 3.9 μm). The Solar Performance Factor is introduced to characterize the potential of any spectral region vis-a`-vis solar blindness.

1.
Siegel, R., and Howell, J. R., 1992, Thermal Radiation Heat Transfer, Hemisphere Publ. Corp.
2.
Horneck
,
G. A.
,
1966
, “
Optical Method of Temperature Measurement
,”
Appl. Opt.
,
5
, pp.
179
186
.
3.
Thorn, R. J., and Winslow, G. H., 1962, “Radiation of Thermal Energy From Real Bodies Temperature,” Temperature, Its Measurement and Control in Science and Industry, Ed. F. G. Brickwedde, Reinhold Publishing Corp. New York, 3, pp. 421–447.
4.
Nutter
,
G. D.
,
1972
, “
Radiation Thermometry
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
,
3,1
, pp.
12
15
.
5.
Hahn
,
J. W.
, and
Rhee
,
C.
,
1987
, “
Reference Method for Two-Color Pyrometer
,”
Appl. Opt.
,
26
, pp.
5276
5279
.
6.
Coates
,
P. B.
,
1981
, “
Multi-Wavelength Pyrometry
,”
Metrologia
,
17
, pp.
103
109
.
7.
Traverse, J. P., and Badie, J. M., 1976, “Mesure des tempe´ratures par pyrome´trie optique a` l’aide d’un rayonnement laser,” Qualite´, Revue Pratique du Controle Industriel, Editions Ampe`re, 79, pp. 9–14.
8.
Foex, M., and Coutures, J. P., 1961, “Remarques sur les Mesures de Tempe´rature des Substances Traite´es au Four Solaire,” Colloque sur l’Energie Solaire, Ed. du CNRS, Mont Louis.
9.
Conn
,
W. N.
, and
Braught
,
G.
,
1954
, “
Separation of Incident and Emitted Radiation in a Solar Furnace by Means of Rotating Sectors
,”
J. Opt. Soc. Am.
,
44
, pp.
45
47
.
10.
Nogushi
,
T.
, and
Koseka
,
T.
,
1966
, “
Temperature and Emissivity Measurement at 0.65 μm With a Solar Furnace
,”
Sol. Energy
,
3
, pp.
125
131
.
11.
Tschudi
,
H. R.
, and
Schubnell
,
M.
,
1999
, “
Measuring Temperatures in the Presence of External Radiation by Flash Assisted Multiwavelength Pyrometry
,”
Rev. Sci. Instrum.
,
70
, pp.
2719
2727
.
12.
Markham
,
J. R.
, and
Lewandoski
,
A.
,
1996
, “
FT-IR Measurements of Emissivity and Temperature During High-Flux Solar Processing
,”
ASME J. Sol. Energy Eng.
,
118
, pp.
20
29
.
13.
Sveatt
,
W. C.
, and
Phipps
,
G. S.
,
1992
, “
Pyrometric Temperature Measurements in Solar Furnaces
,”
ASME J. Sol. Energy Eng.
,
2
, pp.
1025
1028
.
14.
Tschudi
,
H. R.
, and
Morian
,
G.
,
2001
, “
Pyrometric Temperature Measurements in Solar Furnaces
,”
ASME J. Sol. Energy Eng.
,
123
, pp.
164
170
.
15.
Arashi
,
H.
, and
Sakurai
,
T.
,
1976
, “
Infrared Pyrometry for Measuring Target Temperatures in a Solar Furnace
,”
High Temp. - High Press.
,
8
, pp.
349
356
.
16.
Gueymard, C., 1995, “SMARTS2, Simple Model of the Atmospheric Radiative Transfer of Sunshine: Algorithms and Performance Assessment,” Rep. FSEC-PF-270-95, Florida Solar Energy Center, Cocoa, FL.
17.
Gueymard
,
C.
,
2001
, “
Parameterized Transmittance Model for Direct Beam and Circumsolar Spectral Irradiance
,”
Sol. Energy
,
71
, pp.
325
346
.
18.
Berk, A., Bernstein, L. S., and Robertson, D. C., 1989, “MODTRAN: A Moderate Resolution Model for LOWTRAN7,” Rep. GL-TR-89-0122, Air Force Geophysical Lab., Hanscom, MA.
19.
Anderson, G. P. et al., 1996, “Reviewing Atmospheric Radiative Modeling: New Developments in High and Moderate Resolution FASCODE/FASE and MODTRAN,” Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research II, Society of Photo-Optical Instrumentation Engineers (SPIE).
20.
Touloukian, Y. S., and De Witt, D. P., 1972, “Thermal Radiative Properties—Metallic Elements and Alloys,” TRPC Data Series, IFI/Plenum, pp. 158–159.
21.
Foex
,
M.
, and
Coutures
,
J. P.
,
1966
, “
Dispositif de Mesure de Tempe´rature au Four Solaire par Pyrome´trie dans l’Ultra-Violet
,”
Rev. Phys. Appl.
,
4
, pp.
381
382
.
22.
Rozenbaum
,
O.
,
De Sousa
,
M.
,
Auger
,
Y.
, and
Echegut
,
P.
,
1999
, “
Spectroscopic Method to Measure the Spectral Emissivity of Semi-Transparent Materials to High Temperature
,”
Rev. Sci. Instrum.
,
70
, pp.
4020
4025
.
You do not currently have access to this content.