The adoption of blunt trailing edge airfoils for the inboard region of large wind turbine blades has been proposed. Blunt trailing edge airfoils would not only provide a number of structural benefits, such as increased structural volume and ease of fabrication and handling, but they have also been found to improve the lift characteristics of airfoils. Therefore, the incorporation of blunt trailing edge airfoils would allow blade designers to more freely address the structural demands without having to sacrifice aerodynamic performance. Limited experimental data make it difficult for wind turbine designers to consider and conduct tradeoff studies using these section shapes and has provided the impetus for the present analysis of blunt trailing edge airfoils using computational fluid dynamics. Several computational techniques are applied, including a viscous/inviscid interaction method and three Reynolds-averaged Navier-Stokes methods.

1.
Hoerner, S. F., and Borst, H. V., 1985, Fluid-Dynamic Lift, Hoerner Fluid Dynamics, Bricktown, NJ.
2.
Smith, H. A., and Schaefer, R. F., 1950, “Aerodynamic Characteristics at Reynolds Numbers of 3.0×106 and 6.0×106 of Three Airfoil Sections Formed by Cutting Off Various Amounts from the Rear Portion of the NACA 0012 Airfoil Section,” NACA TN-2074.
3.
Tanner
,
M.
,
1972
, “
A Method for Reducing the Base Drag of Wings with Blunt Trailing Edge
,”
Aeronaut. Q.
,
23
(
1
), pp.
15
23
.
4.
Ramjee
,
V.
,
Tulapurkara
,
E. G.
, and
Balabaskaran
,
V.
,
1986
, “
Experimental and Theoretical Study of Wings with Blunt Trailing Edges
,”
J. Aircr.
,
23
(
4
), pp.
349
352
.
5.
Sato
,
J.
, and
Sunada
,
Y.
,
1995
, “
Experimental Research on Blunt Trailing Edge Airfoil Sections at Low Reynolds Numbers
,”
AIAA J.
,
23
(
11
), pp.
2001
2005
.
6.
Law, S. P., and Gregorek, G. M., 1987, “Wind Tunnel Evaluation of a Truncated NACA 64-621 Airfoil for Wind Turbine Applications,” NASA CR-180803.
7.
Althaus, D., 1986, Niedriggeschwindigkeitsprofile, Vieweg, Braunschweig, Germany, pp. 138–175.
8.
Timmer, W. A., 1992, “New Section Shapes for Wind Turbines: a Literature Study,” Report IW-92056R, Institute for Wind Energy, TU Delft, The Netherlands.
9.
Drela, M., 1990, “Newton Solution of Coupled Viscous/Inviscid Multi-Element Airfoil Flows,” AIAA paper 90–1470.
10.
Drela, M., 1989, “Integral Boundary Layer Formulation for Blunt Trailing edges,” AIAA paper 89–2166.
11.
Rogers
,
S. E.
, and
Kwak
,
D.
,
1990
, “
An Upwind Differencing Scheme for the Time Accurate Incompressible Navier-Stokes Equations
,”
AIAA J.
,
28
(
2
), pp.
253
262
.
12.
Rogers
,
S. E.
, and
Kwak
,
D.
,
1991
, “
An Upwind Differencing Scheme for the Steady-state Incompressible Navier-Stokes Equations
,”
Journal of Applied Numerical Mathematics
,
8
(
1
), pp.
43
64
.
13.
Pulliam, T. H., 1985, “Efficient Solution Methods for the Navier-Stokes Equations,” Lecture Notes for the von Ka´rma´n Institute for Fluid Dynamics Lecture Series: Numerical Techniques for Viscous Flow Computation in Turbomachinery Bladings, von Ka´rma´n Institute, Rhode-St-Genese, Belgium.
14.
Buning, P. G., Jespersen, D. C., Pulliam, T. H., Chan, W. M., Slotnick, J. P., Krist, S. E., and Renze, K. J., 2000, “Overflow User’s Manual 1.8s,” NASA Langley Research Center, Hamptpon, VA.
15.
Chan, W. M., 2002, “The Overgrid Interface for Computational Simulations on Overset Grids,” AIAA paper 2002–3188.
16.
Smith, A. M. O., and Gamberoni N., 1956, “Transition, Pressure Gradient and Stability Theory,” Report ES 26388, Douglas Aircraft Company, Long Beach, CA.
17.
Van Ingen, J. L., 1956, “A Suggested Semi-Empirical Method for the Calculation of the Boundary-Layer Transition Region,” Report VTH-74, Dept. of Aerospace Engineering, TU Delft, the Netherlands.
18.
Chorin
,
A. J.
,
1967
, “
A Numerical Method for Solving Incompressible Viscous Flow Problems
,”
J. Comput. Phys.
,
2
, pp.
12
26
.
19.
Roe
,
P. L.
,
1981
, “
Approximate Riemann Solvers, Parameter Vectors, and Difference Scheme
,”
J. Comput. Phys.
,
43
, pp.
357
372
.
20.
Rogers
,
S. E.
,
Wiltberger
,
N. L.
, and
Kwak
,
D.
,
1993
, “
Efficient Simulation of Incompressible Viscous Flow over Single and Multi-Element Airfoils
,”
J. Aircr.
,
30
(
5
), pp.
736
743
.
21.
Rogers
,
S. E.
,
1994
, “
Progress in High-Lift Aerodynamic Calculations
,”
J. Aircr.
,
31
(
6
), pp.
1244
1251
.
22.
Cao, H. V., and Kusunose, K., 1994, “Grid Generation and Navier-Stokes Analysis for Multi-Element Airfoils,” AIAA paper 94-0748.
23.
Chao
,
D. D.
, and
van Dam
,
C. P.
,
1999
, “
Airfoil Drag Prediction and Decomposition
,”
J. Aircr.
,
36
(
4
), pp.
675
681
.
24.
Brodeur
,
R. R.
, and
van Dam
,
C. P.
,
2001
, “
Transition Prediction for a Two-Dimensional Navier-Stokes Solver Applied To Wind-Turbine Airfoils
,”
Wind Energy
,
4
, pp.
61
75
.
25.
Beam
,
R.
, and
Warming
,
R. F.
,
1976
, “
An Implicit Finite-Difference Algorithm for Hyperbolic Systems in Conservation Law Form
,”
J. Comput. Phys.
,
22
, pp.
87
110
.
26.
Barth, T. J., Pulliam, T. H., and Buning, P. G., 1985, “Navier-Stokes Computations for Exotic Airfoils,” AIAA paper 85–0109.
27.
Zingg
,
D. W.
,
1990
, “
Low Mach Number Euler Computations
,”
Canadian Aeronautics and Space Journal
,
36
(
3
), pp.
146
152
.
28.
Mayda
,
E. A.
, and
van Dam
,
C. P.
,
2002
, “
Bubble-Induced Unsteadiness on A Wind Turbine Airfoil
,”
ASME J. Sol. Energy Eng.
,
124
, pp.
335
344
.
29.
Spalart
,
P. R.
, and
Allmaras
,
S. R.
,
1994
, “
A One-Equation Turbulence Model for Aerodynamic Flows
,”
La Recherche Ae´rospatiale
, (
1
), pp.
5
21
30.
Baldwin, B. S., and Barth, T. J., 1990, “A One-Equation Turbulence Transport Model for High Reynolds Number Wall-Bounded Flows,” NASA TM 102847.
31.
Stanway, S. K., McCroskey, W. J., and Kroo, I. M., 1992, “Navier-Stokes Analysis of Blunt Trailing Edge Airfoil,” AIAA paper 92-0024.
32.
Timmer, W. A., and van Rooij, R. P. J. O. M., 1999, “Design and Wind Tunnel Test of Airfoil DU 97-W-300,” Report IW-98003R, Institute for Wind Energy, TU Delft, The Netherlands.
33.
TPI, Inc., 2002, “Parametric Study for Large Wind Turbine Blades: WindPACT Blade System Design Studies,” Report SAND2002-2519, Sandia National Laboratories, Albuquerque, NM.
34.
Tangler, J. L., and Somers, D. M., 1995, “NREL Airfoil Families for HAWTs,” Report NREL/TP-442-7109, Renewable Energy Laboratory, Golden, CO.
35.
van Rooij, R. P. J. O. M., and Timmer, W. A., 2003, “Roughness Sensitivity Considerations for Thick Rotor Blade Airfoils,” AIAA paper 2003-0350.
You do not currently have access to this content.