Central Receiver Systems that use large heliostat fields and solar receivers located on top of a tower are now in the position to deploy the first generation of grid-connected commercial plants. The technical feasibility of the CRS power plants technology can be valued as sufficiently mature after the pioneering experience at the early 1980s of several pilot plants in the 0.5–10 MW power range and the subsequent improvement of key components like heliostats and solar receiver in many projects merging international collaboration during the past 15 years. Solar-only plants like Solar Tres and PS10 or hybrid schemes like SOLGAS, CONSOLAR, or SOLGATE are being developed and supply a portfolio of alternatives leading to the first scaling-up plants during the period 2000–2010. Those projects with still non-optimized small sizes of 10–15 MW are already revealing a dramatic reduction of costs versus previous feasibility studies and give the path for the formulation of a realistic milestone of achieving a LEC of $0.08/kWh by the year 2010 and penetrating initial competitive markets by 2015 with LECs between $0.04/kWh–$0.06/kWh.

1.
Becker, M., Macias, M., and Ajona, J. I., 1996, “Solar Thermal Power Stations,” The Future for Renewable Energy: Prospects and Directions, EUREC-Agency, ed., James&James Science Publishers, London, pp. 135–153.
2.
Sizmann, R., 1991, “Solar Radiation Conversion.” Solar Power Plants, C. J. Winter, R. L. Sizmann, and L. L. Vant-Hull, eds., Springer-Verlag, Berlin, pp. 17–83.
3.
Mancini, T. R., Kolb, G. J., and Prairie, M., 1997, “Solar Thermal Power,” Advances in Solar Energy: An Annual Review of Research and Development, 11, Karl W. Boer, ed., American Solar Energy Society, Boulder, CO, pp. 1–42.
4.
Romero
,
M.
,
Marcos
,
M. J.
,
Te´llez
,
F. M.
,
Blanco
,
M.
,
Ferna´ndez
,
V.
,
Baonza
,
F.
, and
Berger
,
S.
,
2000
, “
Distributed Power from Solar Tower Systems: A MIUS Approach
,”
Sol. Energy
,
67
(
4-6
), pp.
249
264
.
5.
Kolb
,
G. J.
,
1998
, “
Economic Evaluation of Solar-Only and Hybrid Power Towers Using Molten-Salt Technology
,”
Sol. Energy
,
62
(
1
), pp.
51
61
.
6.
DeMeo, E. A., and Galdo, J. F., 1997, “Renewable Energy Technology Characterizations,” TR-109496 Topical Report, December 1997, U.S. DOE-Washington and EPRI, Palo Alto, CA.
7.
Falcone, P. K., 1986, “A Handbook for Solar Central Receiver Design,” SAND86-8009, Sandia National Laboratories, Livermore, CA.
8.
Grasse, W., Hertlein, H. P., and Winter, C. J., 1991, “Thermal Solar Power Plants Experience.” Solar Power Plants, C. J. Winter, R. L. Sizmann, L. L. Vant-Hull, eds., Springer-Verlag, Berlin, pp. 215–282.
9.
Centrales a` Tour: Conversion Thermodynamique de l’Energie Solaire
,”
1982
,
Entropie
,
103
, pp.
1
115
.
10.
Radosevich
,
L. G.
, and
Skinrood
,
A. C.
,
1989
, “
The Power Production Operation of Solar One: The 10 MWe Solar Thermal Central Receiver Pilot Plant
,”
ASME J. Sol. Energy Eng.
,
111
, pp.
144
151
.
11.
Pacheco, J. E., and Gilbert, R., 1999, “Overview of Recent Results of the Solar Two Test and Evaluations Program,” In Renewable and Advanced Energy Systems for the 21st Century RAES’99, April, Maui, Hawaii, pp. RAES99–7731, R. Hogan, Y. Kim, S. Kleis, D. O’Neal, and T. Tanaka, eds., ASME, New York.
12.
Chavez, J. M., Kolb, G. J., and Meinecke, W., 1993, “Second Generation Central Receiver Technologies-A Status Report.” M. Becker, and P. C. Klimas, eds., Verlag C. F. Mu¨ller GmbH, Karlsruhe, Germany.
13.
Blake, F. A., Gorman, D. N., and McDowell, J. H., 1984, “ARCO Central Receiver Solar Thermal Enhanced Oil Recovery Project,” Thermo-Mechanical Solar Power Plants, Proc. of 2nd Int. Workshop on the Design, Construction, and Operation of Solar Central Receiver Projects, Varese, Italy, June 4–8, 2, pp. 365–383.
14.
Epstein
,
M.
,
Liebermann
,
D.
,
Rosh
,
M.
, and
Shor
,
A. J.
,
1991
, “
Solar testing of 2 MW (th) Water/Steam Receiver at the Weizmann Institute Solar Tower
,”
Sol. Energy Mater.
,
24
, pp.
265
278
.
15.
Ruiz
,
V.
,
Silva
,
M.
, and
Blanco
,
M.
,
1999
, “
Las Centrales Energe´ticas Termosolares
,”
Energı´a
,
6
(
XXV
), pp.
47
55
.
16.
Romero
,
M.
,
Ferna´ndez
,
V.
,
Sa´nchez
,
M.
,
1999
, “
Optimization and Performance of an Optically Asymmetrical Heliostat Field
,”
J. Phys. IV
,
9
(Pr3), pp.
71
76
.
17.
Silva
,
M.
,
Blanco
,
M.
, and
Ruiz
,
V.
,
1999
, “
Integration of Solar Thermal Energy in a Conventional Power Plant: The COLON SOLAR Project
,”
J. Phys. IV
,
9
(Pr3), pp.
189
194
.
18.
Kelly, B., and Singh, M., 1995, “Summary of the Final Design for the 10 MWe Solar Two Central Receiver Project,” Solar Engineering: 1995, ASME, 1, p. 575.
19.
Pacheco, J. E., Reilly, H. E., Kolb, G. J., and Tyner, C. E., 2000, “Summary of the Solar Two Test and Evaluation Program,” Proc. of Renewable Energy for the New Millennium, Sydney, Australia, March, pp. 1–11.
20.
Zavoico, A. B., Gould, W. R., Kelly, B. D., Grimaldi, I., and Delegado, C., 2001, “Solar Power Tower (SPT) Design Innovations to Improve Reliability and Performance-Reducing Technical Risk and Cost,” Proc. of Forum 2001 Conf., April, Washington, DC.
21.
Barth
,
D. L.
,
Pacheco
,
J. E.
,
Kolb
,
W. J.
, and
Rush
,
E. E.
,
2002
, “
Development of a High-Temperature, Long-Shafted, Molten-Salt Pump for Power Tower Applications,
,”
ASME J. Sol. Energy Eng.
,
124
(
2
), pp.
170
175
.
22.
Hoffschmidt, B., 1997, Vergleichende Bewertung verschiedener Konzepte Volumetrischer Strahlungsempfa¨nger, DLR Forschungsbericht pp. 97–35.
23.
Becker, M., and Boehmer, M., 1989, GAST: The Gas Cooled Solar Tower Technology Program, Springer Verlag, Berlin Heidelberg.
24.
Becker, M., Cordes, S., and Bo¨hmer, M., 1992, “The Development of Open Volumetric Receivers,” Proc. of 6th Int. Symp. on Solar Thermal Concentrating Tech., Sept–Oct. CIEMAT, ed., Madrid, Spain, II, pp. 945–952.
1.
Hoffschmidt, B., Ferna´ndez, V., Konstandopoulos, A. G., Mavroidis, I., Romero, M., Stobbe, P., and Te´llez, F. 2001, “Development of Ceramic Volumetric Receiver Technology,” Proc. of 5th Cologne Solar Symp., June 2001;
2.
K.-H. Funken and W. Bucher, eds. Forschungsbericht 2001-10, DLR-Cologne, Germany, pp. 51–61.
1.
Fricker H., 1985, “Studie u¨ber die Mo¨glichkeiten eines Alpenkraftwerkes,” Bull. SEV/VSE, 76, pp. 10–16.
2.
Schmitz-Goeb, M., and Keintzel, G., 1997, “The Phoebus Solar Power Tower,” Proc. of 1997 ASME Int. Solar Energy Conf., April, Washington D.C., D. E. Claridge and J. E. Pacheco, eds., pp. 47–53.
3.
Grasse
,
W.
,
1991
, “
PHOEBUS-International 30 MWE Solar Tower Plant
,”
Sol. Energy Mater.
,
24
, pp.
82
94
.
4.
Haeger, M., 1994, “Phoebus Technology Program: Solar Air Receiver (TSA),” PSA Tech. Report: PSA-TR02/94, July 1994.
5.
Romero, M., Marcos, M. J., Osuna, R., and Ferna´ndez, V., 2000, “Design and Implementation Plan of a 10 MW Solar Tower Power Plant based on Volumetric-Air Technology in Seville (Spain),” Solar Engineering 2000-Proc. of ASME Int. Solar Energy Conf., Madison, WI, June, J. E. Pacheco and M. D. Thornbloom, eds., ASME, New York.
6.
Mancini, T. R., 2000, “Catalog of Solar Heliostats,” SolarPACES Tech. Report No. III-1/00, June 2000, T. R. Mancini, ed., Sandia National Labs., Albuquerque, NM DLR, Cologne, Germany.
7.
Price, H. W., Whitney, D. D., and Beebe, H. I., 1996, “SMUD Kokhala Power Tower Study,” Proc. of 1996 Int. Solar Energy Conf., San Antonio, TX.
8.
Kribus
,
A.
,
Zaibel
,
R.
,
Carrey
,
D.
,
Segal
,
A.
, and
Karni
,
J.
,
1997
, “
A solar-driven combined cycle power plant
,”
Sol. Energy
,
62
, pp.
121
129
.
9.
Buck R., Lu¨pfert, E., and Te´llez, F., 2000, “Receiver for Solar-Hybrid Gas Turbine and CC Systems (REFOS),” Proc. 10th SolarPACES Int. Symp. Solar Thermal 2000, March, Sydney, Australia, pp. 95–100.
10.
Kribus, A., 1996, “High-Concentration Solar Energy Optics,” Proc. of Sun Day Symp., Weizmann Institute of Science, Rehovot, Israel, May.
11.
Schwarzbo¨zl, P., Pitz-Paal, R., Meinecke, W., and Buck, R., 2000, “Cost-Optimized Solar Gas Turbine Cycles Using Volumetric Air Receiver Technology,” Proc. 10th SolarPACES Int. Symp. Solar Thermal 2000, March, Sydney, Australia, pp. 171–177.
12.
Buck
,
R.
,
Bra¨uning
,
T.
,
Denk
,
T.
,
Pfa¨nder
,
M.
,
Schwarzbo¨zl
,
P.
, and
Tellez
F.
,
2001
, “
Solar-Hybrid Gas Turbine-Based Power Tower Systems (REFOS)
,”
ASME J. Sol. Energy Eng.
,
124
(
1
), pp.
2
9
.
13.
Tamme
,
R.
,
Buck
,
R.
,
Epstein
,
M.
,
Fisher
,
U.
, and
Sugarmen
,
C.
,
2001
, “
Solar Upgrading of Fuels for Generation of Electricity
,”
ASME J. Sol. Energy Eng.
,
123
(
2
), pp.
160
163
.
14.
Enermodal Engineering Ltd., 1999. “Cost Reduction Study for Solar Thermal Power Plants. Final Report.” Prepared by Enermodal Engineering Ltd. in association with Marbek Resource Consultants Ltd., by contract of World Bank/GEF, Washington D.C., May 5, 1999.
15.
Tyner, C. E., Kolb, G. J., Geyer, M., and Romero, M., 2001, “Concentrating Solar Power in 2001: An IEA SolarPACES Summary of Present Status and Future Prospects,” International Energy Agency, Solar PACES, May 2001.
16.
Garcı´a, G., Egea, A., Romero, M., and Ga´zquez, J. A., 2000, “The Stand-Alone Heliostat First Operation Results,” Proc. Solar Thermal 2000—Renewable Energy for the New Millennium Conf., Sydney, Australia, March, H. Kreetz, K. Lovegrove, and W. Meike, eds., Australian and New Zealand Solar Energy Society, Sydney, pp. 165–170.
17.
Becker, M., and Vant-Hull L. L., 1991, “Thermal Receivers.” Solar Power Plants, C. J. Winter, R. L. Sizmann, L. L. Vant-Hull, eds., Springer-Verlag, Berlin, pp. 163–198.
18.
Garcı´a-Martin
,
F. J.
,
Berenguel
,
M.
,
Valverde
,
A.
, and
Camacho
,
E. F.
,
1999
, “
Heuristic Knowledge-Based Heliostat Field Control for the Optimization of the Temperature Distribution in a Volumetric Receiver
,”
Sol. Energy
,
66
(
5
), pp.
355
369
.
19.
Kolb, G. J., and Saluta, D., 1999, “Automatic Control of the Solar Two Receiver,” Proc. of Renewable and Advanced Energy Systems for the 21st Century RAES’99, April, Maui, Hawaii, pp. RAES99-7707(CD-Rom), R. Hogan, Y. Kim, S. Kleis, D. O’Neal, and T. Tanaka, eds., ASME, New York, 1999.
You do not currently have access to this content.