The solar thermal reduction of ZnO, using solar process heat and CH4 or C as reducing agent, is investigated for CH4:ZnO or C:ZnO molar ratios ranging from 0 (thermal decomposition at above about 2000°C) to 1 (stoichiometric reduction at above about 1000°C). At 1400°C, in thermodynamic equilibrium ZnO can be completely reduced using a CH4:ZnO molar ratio of 0.3 and produces one fuel (Zn-metal) rather than two for the stoichiometric case (Zn and syngas). The maximal reactor thermal efficiency without heat recovery from the offgas, defined as the ratio of the heating-value of the zinc produced to the total thermal energy input, is 55%. CO2-emissions are reduced by a factor of 10–15 compared to fossil-fuel-based zinc-production technologies. For a closed materials cycle, in which power is extracted from the solar zinc using a fuel cell and the ZnO formed is recycled to the solar reactor, the total exergy efficiency, defined as the work output of the fuel cell to the thermal energy input, varies between 30 to 40% when based on the absorbed solar power in the reactor. These efficiency values are very encouraging, especially since the solar ZnO/Zn cycle allows—in contrast to other regenerative power plants—to store and transport solar energy.

1.
Fletcher
,
E. A.
,
2001
, “
Solarthermal Processing: A Review
,”
ASME J. Solar Energy Eng.
,
123
, pp.
63
74
.
2.
Steinfeld, A., and Palumbo, R., 2000, “Solar Thermal Process Technology,” Encyclopedia of Physical Science and Technology, R. A. Meyers (Ed.), Academic Press, 15, pp. 237–256.
3.
Pauling, H., and Koch, A. (1998), “ZOXY: Zinc/Air Fuel Cell for Mobile Applications,” presentation Karlsbad/Czech Republic, to be found in: http://www.chemtek.de/english/english.htm.
4.
Goldstein
,
J.
,
Brown
,
I.
, and
Krotz
,
B.
,
1999
, “
New Developments in the Electric Fuel Ltd Zinc/Air System
,”
J. Power Sources
,
80
, pp.
171
179
.
5.
Steinfeld, A., Weidenkaff, A., and Palumbo, R., 1999, “Solar Thermal Chemical Processing: A Renewable Energy Path for Reducing Greenhouse Gas Emissions,” in: Greenhouse Gas Emission Control Technologies, Elsevier.
6.
Palumbo
,
R.
,
Le´de´
,
J.
,
Boutin
,
O.
,
Elorza Ricart
,
E.
,
Steinfeld
,
A.
,
Mo¨ller
,
S.
,
Weidenkaff
,
A.
,
Fletcher
,
E. A.
, and
Bielicki
,
J.
,
1998
, “
The Production of Zn from ZnO in a High Temperature Solar Decomposition Quench Process—I. The Scientific Framework for the Process
,”
Chem. Eng. Sci.
,
53
, pp.
2503
2517
.
7.
Haueter, P., Mo¨ller, S., Palumbo, R., and Steinfeld, A., 2000, “The Production of Zinc by Thermal Dissociation of Zinc Oxide—Solar Chemical Reactor Design,” Sol. Energy, in Press.
8.
Steinfeld
,
A.
,
Frei
,
A.
,
Kuhn
,
P.
, and
Wuillemin
,
D.
,
1995
, “
Solar Thermal Production of Zinc and Syngas via Combined ZnO-Reduction and CH4-Reforming Process
,”
Int. J. Hydrogen Energy
,
20
, pp.
793
804
.
9.
Berman
,
A.
, and
Epstein
,
M.
,
1999
, “
The Kinetic Model for Carboreduction of Zinc Oxide
,”
J. Phys. IV
,
9
, pp.
319
324
.
10.
Weidenkaff
,
A.
,
Brack
,
M.
,
Mo¨ller
,
S.
,
Palumbo
,
R.
, and
Steinfeld
,
A.
,
1999
, “
Solar Thermal Production of Zinc: Program Strategy and Status of Research
,”
J. Phys. IV
,
9
, pp.
313
318
.
11.
Steinfeld
,
A.
,
Brack
,
M.
,
Meier
,
A.
,
Weidenkaff
,
A.
, and
Wuillemin
,
D.
,
1998
, “
A Solar Chemical Reactor for Co-Production of Zinc and Synthesis Gas
,”
Energy (Oxford)
,
23
, pp.
803
814
.
12.
Kra¨upl
,
S.
, and
Steinfeld
,
A.
,
2000
, “
Pulsed Gas Feeding for Stoichiometric Operation of a Gas-Solid Vortex Flow Solar Chemical Reactor
,”
ASME J. Sol. Energy Eng.
,
123
, pp.
133
137
.
13.
Bale
,
C.
, and
Pelton
,
A.
,
1999
, “
Software package FACT-WIN, see http://www.crct.polymtl.ca/FACT/fact.htm for a description; Pelton, A. (1997), “Thermodynamic Databases and Equilibrium Calculations in Metallurgical Processes
,”
Pure Appl. Chem.
,
69
, pp.
969
978
.
14.
Watson
,
L. R.
,
Thiem
,
T. L.
,
Dressler
,
R. A.
,
Salter
,
R. H.
, and
Murad
,
E.
,
1993
, “
High Temperature Mass Spectrometric Studies of the Bond Energies of Gas-Phase ZnO, NiO and CuO
,”
J. Phys. Chem.
,
97
, pp.
5577
5580
.
15.
Boustead, I., and Dove, W. T., 1998, “Ecoprofile of Primary Zinc Production,” Report for the International Zinc Association, Brussels.
16.
Paschen, P., 2000, Montanuniversity Leoben/Austria, private communication.
17.
Werder
,
M.
, and
Steinfeld
,
A.
,
2000
, “
Life Cycle Assessment of the Conventional and Solar Thermal Production of Zinc and Synthesis Gas
,”
Energy (Oxford)
,
25
, pp.
395
409
.
18.
Pauling, H.-J., 2000, Chem TEK Corporation, private communication.
19.
Eliasson, B., 1998, “Renewable Energy,” ABB Environmental Affairs, Va¨xjo¨, Sweden.
20.
Kribus
,
A.
,
Krupkin
,
V.
,
Yogev
,
A.
, and
Spirkl
,
W.
,
1998
, “
Performance Limits of Heliostat Fields
,”
ASME J. Sol. Energy Eng.
,
120
, pp.
240
246
.
21.
Mohr, M., Svoboda, P., and Unger, H., 1999, “Praxis solarthermischer Kraftwerke,” Springer-Verlag Berlin.
22.
Graf, G., 1996, “Zinc,” in: Ullmann’s Encyclopedia of Industrial Chemistry, VCH Verlagsgesellschaft Weinheim, Vol. A28, pp. 509–530.
23.
Steinfeld
,
A.
, and
Spiewak
,
I.
,
1998
, “
Economic Evaluation of the Solar Thermal Co-Production of Zinc and Synthesis Gas
,”
Energy Convers. Manage.
,
39
, pp.
1513
1518
.
You do not currently have access to this content.