Contributed by the Solar Energy Division of THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF SOLAR ENERGY ENGINEERING. Manuscript received by the ASME Solar Energy Division, August 2000; final revision, January 2001. Associate Editor: D. M. Blake.

Concentrated solar energy can be used to drive thermochemical reactions 1. Among the great number of suggested chemical systems, the dissociation of ZnO 2 and the thermochemical conversion of carbonaceous materials (biomass for example) 3 are often mentioned. These reactions are usually independently studied:

The solar carboreduction of ZnO has been recently suggested 9,10 with three main advantages: decrease of the temperature at which zinc can be formed, simultaneous production of syngas and minimization of the severity of the quench section. The reaction can be carried out with coal or with carbon. It involves several mechanisms including reduction with CO. A new idea would...

1.
Steinfeld, A., 2000, IEA SolarPACES, Task II: Solar Chemistry, Minutes of the 14th Annual Task II Meeting, University of Sydney (Australia), March 13.
2.
Palumbo
,
R.
,
Le´de´
,
J.
,
Boutin
,
O.
,
Elorza-Ricart
,
E.
,
Steinfeld
,
A.
,
Mo¨ller
,
S.
,
Weidenkaff
,
A.
,
Fletcher
,
E. A.
, and
Bielicki
,
J.
,
1998
, “
The production of Zn from ZnO in a high temperature solar decomposition quench process—I. The scientific framework for the process
,”
Chem. Eng. Sci.
,
53
, No.
14
, pp.
2503
2517
.
3.
Le´de´
,
J.
,
1999
, “
Solar thermochemical conversion of biomass
,”
Sol. Energy
,
65
, No.
1
, pp
3
13
.
4.
Elorza-Ricart
,
E.
,
Martin
,
P. Y.
,
Ferrer
,
M.
, and
Le´de´
,
J.
,
1999
, “
Direct thermal splitting of ZnO followed by a quench. Experimental measurement of mass balances
,”
J. Phys. IV
,
9
, Pr3, pp.
325
330
.
5.
Elorza-Ricart
,
E.
,
Ferrer
,
M.
, and
Le´de´
,
J.
,
2000
, “
Dissociation thermique directe de l’oxyde de zinc par voie solaire
,”
Entropie
,
228
, pp.
55
59
.
6.
Le´de´, J., Diebold, J. P., Peacocke, G. V. C., and Piskorz, J., 1999, “The nature and properties of intermediate and unvaporized biomass pyrolysis materials,” In “Fast Pyrolysis of biomass: A handbook,” A. V. Bridgwater et al. (Eds.), CPL Press, Ch. 4, pp. 51–65.
7.
Boutin
,
O.
,
Ferrer
,
M.
, and
Le´de´
,
J.
,
1998
, “
Radiant flash pyrolysis of cellulose. Evidence for the formation of short life time intermediate liquid species
,”
J. Anal. Appl. Pyrolysis
,
47
, pp.
13
31
.
8.
Boutin, O, 1999, Analyze des processus primaires de de´gradation thermochimique de la biomasse, Ph.D. thesis, INPL-LSGC-Nancy (France).
9.
Tsuji
,
M.
,
Wada
,
Y.
,
Tamaura
,
Y.
,
Steinfeld
,
A.
,
Kuhn
,
P.
, and
Palumbo
,
R.
,
1996
, “
Coal gasification using the ZnO/Zn Redox system
,”
Energy Fuels
,
10
, pp.
225
228
.
10.
Berman
,
A.
, and
Epstein
,
M.
,
1999
, “
The kinetics model for carboreduction of zinc oxide
,”
J. Phys. IV
,
9
, Pr 3, pp.
319
324
.
11.
Le´de´
,
J.
, and
Ferrer
,
M.
,
1999
, “
Solar thermochemical reactors
,”
J. Phys. IV
,
9
, Pr 3, pp.
253
258
.
12.
Le´de´
,
J.
,
Li
,
H. Z.
,
Villermaux
,
J.
, and
Martin
,
H.
,
1987
, “
Fusion-like behavior of wood pyrolysis
,”
J. Anal. Appl. Pyrolysis
,
10
, pp.
291
308
.
13.
Shafizadeh
,
F.
,
Lai
,
Y. Z.
, and
McIntyre
,
C. R.
,
1978
, “
Thermal degradation of 6-chlorocellulose and cellulose-zinc chloride mixture
,”
J. Appl. Polym. Sci.
,
22
, pp.
1183
1193
.
14.
Varhegyi
,
G.
,
Antal
,
M. J.
,
Szekely
,
T.
, and
Szabo
,
P.
,
1989
, “
Kinetics of the thermal decomposition of cellulose, hemicellulose and sugar cane bagasse
,”
Energy Fuels
,
3
, pp.
329
335
.
15.
Williams
,
P. T.
, and
Horne
,
P. A.
,
1994
, “
The role of metal salts in the pyrolysis of biomass
,”
Energy Fuels
,
4
, No.
1
, pp.
1
13
.
16.
Boutin
,
O.
,
Le´de´
,
J.
,
Olalde
,
G.
, and
Ferrie`re
,
A.
,
1999
, “
Solar flash pyrolysis of biomass. Direct measurement of the optical properties of biomass components
,”
J. Phys. IV
,
9
, Pr 3 pp.
367
372
.
You do not currently have access to this content.