Solar thermal Alkali-Metal-Thermal-to-Electric-Conversion (AMTEC) power systems potentially have several important advantages over current solar photovoltaic power systems in ultra-high-power spacecraft applications for medium-earth orbit (MEO) and geosynchronous orbit (GEO) missions. This work presents key aspects of radial AMTEC cell design to achieve high cell performance in solar AMTEC systems delivering larger than 50 kW(e) with AMTEC cell conversion efficiency larger than 22 percent. A new design parameter methodology is demonstrated establishing optimum design parameters in radial cell design to satisfy high-power mission requirements. Specific temperature- and pressure-dependent relationships define critical dependencies between key cell design parameters, particularly the impact of parasitic thermal losses on Beta Alumina Solid Electrolyte (BASE) area requirements, voltage, BASE tube number, and system power production for maximum power-per-BASE-area and optimum efficiency conditions. High-level system tradeoffs are demonstrated using the design parameter methodology to establish high-power radial cell design requirements and determine optimum radial AMTEC designs. [S0199-6231(00)00102-7]

1.
Hendricks, T. J., and Sievers, R. K., 1998, Ultra-High Efficiency (UltraHIE) Alkali Metal Thermal to Electric Conversion Phase I Final Report, AFRL Report #PL-TR-97-1160, Air Force Research Laboratory, Kirtland Air Force Base, NM.
2.
Mital, R., Huang, C., Hendricks, T. J., Rasmussen, J. R., Hundal, R., and Sievers, R. K., 1998, “Novel Radial AMTEC Cell Design,” Proceedings of 33rd Intersociety Energy Conversion Engineering Conference, Colorado Springs, CO, AMTEC I Session, Paper #98-267.
3.
Sievers, R. K., Rasmussen, J. R., and Giglio, J. C., 1998, “Series II AMTEC Cell Development Issues,” Proceedings of 33rd Intersociety Energy Conversion Engineering Conference, Colorado Springs, CO, AMTEC I Session, Paper #98-359.
4.
Underwood
,
M. L.
,
Williams
,
R. M.
,
Ryan
,
M. A.
,
Jeffries-Nakamura
,
B.
, and
O’Connor
,
D.
,
1992
, “
An AMTEC Vapor-Vapor, Series Connected Cell
,”
Proceedings of 9th Symposium on Space Nuclear Power Systems
,
American Institute of Physics
,
New York
,
AIP Conference Proceedings
#
246
, Part 3, pp.
1331
1337
.
5.
Hendricks
,
T. J.
,
Borkowski
,
C. A.
, and
Huang
,
C.
,
1998
, “
Development and Experimental Validation of a SINDA/FLUINT Thermal/Fluid/Electrical Model of a Multi-Tube AMTEC Cell
,”
Proceedings of the 1998 Space Technology and Applications International Forum
, STAIF-98,
American Institute of Physics
,
Woodbury, New York
,
AIP Conference Proceedings
#
420
, Part 3, pp.
1491
1501
.
6.
Sievers, R. K., and Bankston, C. P., 1988, “Radioisotope Powered Alkali Metal Thermoelectric Converter Design for Space Systems,” Proceedings of 23rd Intersociety Energy Conversion Engineering Conference, Paper #889082, 3, pp. 159–167.
7.
Cole, T., Weber, N., and Hunt, T. K., 1979, “Electrical Resistivity of Beta-Alumina Solid Electrolytes from 200 to 1000°C,” Proceedings of the International Conference on Fast Ion Conduction in Solids, Electrodes and Electrolytes, Vashishta, P., Mundy, J. N., and Shenoy, G. K., eds., Elsevier North-Holland, New York, pp. 277–280.
8.
Hendricks, T. J., and Huang, C., 1998, “System Design Impacts on Optimization of the Advanced Radioisotope Power System AMTEC Cell,” Proceedings of 33rd Intersociety Energy Conversion Engineering Conference, Colorado Springs, CO, Space Energy Conversion II Session, Paper #98-407.
9.
Cullimore, B. A., Ring, S. G., Goble, R. G., and Jensen, C. L., 1996, “SINDA/FLUINT—Systems Improved Numerical Differencing Analyzer and Fluid Integrator,” Version 3.2, User’s Manual, Cullimore and Ring Technologies, Inc., Littleton, CO.
10.
Kreith, F., and Kreider, J. F., 1978, Principles of Solar Engineering, Hemisphere, Washington, D.C., McGraw-Hill, New York, pp. 262–275.
You do not currently have access to this content.