Space-based inflatable technology is of current interest to NASA and DOD, and in particular to the Air Force and Phillips Laboratory. Potentially large gains in lowering launch costs, through reductions in structure mass and volume, are driving this activity. Diverse groups are researching and developing this technology for radio and radar antennae, optical telescopes, and solar power and propulsion applications. Regardless of the use, one common requirement for successful application is the accuracy of the inflated surface shape. The work reported here concerns the shape control of an inflated thin circular disk through use of a nonlinear finite element analysis. First, a review of the important associated Hencky problem is given. Then we discuss a shape modification, achieved through enforced boundary displacements, which resulted in moving the inflated shape towards a desired parabolic profile. Minimization of the figure error is discussed and conclusions are drawn.

1.
Basart, J. P., Mandayam, S. A., and Burns, J. O., 1994, “An Inflatable Antenna for Space-Based Low-Frequency Radio Astronomy,” Proc Space ’94: Engineering, Construction, and Operations in Space IV, Vol. 2, Albuquerque, NM.
2.
Cambell
J. D.
,
1956
, “
On the Theory of Initially Tensioned Circular Membranes Subjected to Uniform Pressure
,”
Q J Mech Appl Math
, Vol.
9
, pp.
84
93
.
3.
Cassapakis, C., and Thomas, M., 1995, “Inflatable Structures Technology Development Overview,” AIAA 95-3738.
4.
Chien, W. Z., 1948, “Asymptotic Behavior of a Thin Clamped Plate Under Uniform Normal Pressure at Very Large Deflection,” Sci. Rep. Natn. Tsing Hua Univ., Vol. A5, pp. 71–94.
5.
Chow
P. Y.
,
1992
, “
Construction of Pressurized, Self-Supporting Membrane Structure on the Moon
,”
J Aerospace Engineering
, Vol.
5
, pp.
274
281
.
6.
Ciarlet
P. G.
,
1980
, “
A Justification of the von Ka´rma´n Equations
,”
Arch Rat Mech Anal
Vol.
73
, pp.
349
389
.
7.
Dickey
R. W.
,
1967
, “
The Plane Circular Elastic Surface Under Normal Pressure
,”
Arch Rational Mech Anal
Vol.
26
, pp.
219
236
.
8.
Fo¨ppl, A., 1907, “Vorlesungen uber technische Mechanik,” B. G. Teubner, Leipzig, Germany, Bd. 5., pp. 132.
9.
Grossman
G.
, and
Williams
G.
,
1990
. “
Inflatable Concentrators for Solar Propulsion and Dynamic Space Power
,”
ASME JOURNAL OF SOLAR ENERGY ENGINEERING
, Vol.
112
, pp.
229
236
.
10.
Hart-Smith
L. J.
, and
Crisp
J. D. C.
,
1967
, “
Large Elastic Deformations of Thin Rubber Membranes
,’
Int J Eng Sci
Vol.
5
, pp.
1
24
.
11.
Hedgepeth
J. M.
,
1982
, “
Accuracy Potentials for Large Space Antenna Reflectors with Passive Structures
,”
J Spacecraft
Vol.
19
, No.
3
, pp.
211
217
.
12.
Hencky
H.
,
1915
, “
Uber den Spannungszustand in Kreisrunden Platten
,”
Z. Math. Phys.
, Vol.
63
, pp.
311
317
.
13.
Jenkins, C. H., Marker, D. K., and Wilkes, J. M., 1998a, “Improved Surface Accuracy of Precision Membrane Reflectors Through Adaptive Rim Control,” AIAA Adaptive Structures Forum, Long Beach, CA.
14.
Jenkins, C. H., Wilkes, J. M., and Marker, D. K., 1998b, “Surface Accuracy of Precision Membrane Reflectors,” Space 98, Albuquerque, NM.
15.
Jenkins
C. H.
,
1996
a, “
Nonlinear Dynamic Response of Membranes: State of the Art—Update
,”
Appl Mech Rev
Vol.
49
, No.
10
, pp.
S41–S48
S41–S48
.
16.
Jenkins, C. H., 1996b, “Shape Control of an Inflated Thin Circular Disk: Preliminary Investigation,” AFOSR Summer Faculty Research Report.
17.
Jenkins
C. H.
, and
Leonard
J. W.
,
1991
, “
Nonlinear Dynamic Response of Membranes: State of the Art
,”
Appl Mech Rev
Vol.
44
, pp.
319
328
.
18.
Kao
R.
, and
Perrone
N.
,
1971
, “
Large Deflections of Axisymmetric Circular Membranes
,”
Int J Solids Struct
Vol.
7
, pp.
1601
1612
.
19.
Kao
R.
, and
Perrone
N.
,
1972
, “
Large Deflections of Flat Arbitrary Membranes
,”
Comput Struct
Vol.
2
, pp.
535
546
.
20.
Malone, P. K., and Williams, G. T., 1995, “A Lightweight Inflatable Solar Array,” Proc 9th Annual AIAA/USU Conference on Small Satellites, Logan, UT.
21.
Murphy
L. M.
,
1987
, “
Moderate Axisymmetric Deformations of Optical Membrane Surfaces
,”
ASME JOURNAL OF SOLAR ENERGY ENGINEERING
, Vol.
109
, pp.
111
120
.
22.
Murphy
L. M.
,
1986
, “
Stretched-Membrane Heliostat Technology
,”
ASME JOURNAL OF SOLAR ENERGY ENGINEERING
, Vol.
108
, pp.
230
238
.
23.
Natori, M., Shibayama, Y., and Sekine, K., 1989, “Active Accuracy Adjustment of Reflectors Through the Change of Element Boundary,” AIAA, 89-1332.
24.
Nowak
P. S.
,
Sadeh
W. Z.
, and
Janakus
J.
,
1994
, “
Feasibility Study of Inflatable Structures for Lunar Base
,”
J Spacecraft Rockets
, Vol.
31
, pp.
453
457
.
25.
Palisoc, A., and Thomas, M., 1995, “A Comparison of the Performance of Seamed and Unseamed Inflatable Concentrators,” Solar Engineering 1995, Proc. 1995 ASME/JSME/JSES Int Solar Energy Conf., Vol. 2, pp. 855–864.
26.
Pujara
, and
Lardner
T. J.
,
1978
, “
Deformations of Elastic Membranes—Effect of Different Constitutive Relations
,”
Z Angew Math Phys
, Vol.
29
, pp.
315
327
.
27.
Rogers
C. A.
,
Stultzman
W. L.
,
Campbell
T. G.
, and
Hedgepeth
J. M.
,
1993
, “
Technology Assessment and Development of Large Deployment Antennas
,”
J Aerospace Engineering
, Vol.
6
, No.
1
, pp.
34
54
.
28.
Sadeh, W. Z., and Criswell, M. E., 1994, “A Generic Inflatable Structure for a Lunar/Martian Base,” Space IV, Proc Space ’94, Albuquerque, ASCE, pp. 1146–1156.
29.
Schmidt
R.
,
1974
, “
On Berger’s Method in the Non-Linear Theory of Plates
,”
J Appl Mech
Vol.
41
, pp.
521
523
.
30.
Schmidt
R.
, and
DaDeppo
D. A.
,
1974
, “
A New Approach to the Analysis of Shells, Plates, and Membranes With Finite Deflections
,”
Int J Non-Linear Mech
Vol.
9
, pp.
409
419
.
31.
Shaw
F. S.
, and
Perrone
N.
,
1954
, “
A Numerical Solution for the Non-Linear Deflection of Membranes
,”
J Appl Mech
Vol.
21
, pp.
117
128
.
32.
Stevens
H. H.
,
1944
, “
Behavior of Circular Membranes Stretched Above the Elastic Limit by Air Pressure
,”
Experimental Stress Analysis
, Vol.
2
, pp.
139
146
.
33.
Storakers
B.
,
1983
, “
Small Deflections of Linear Elastic Circular Membranes Under Lateral Pressure
,”
J Appl Mech
, Vol.
50
, pp.
735
739
.
34.
Thomas, M., and Veal, G., 1984, “Highly Accurate Inflatable Reflectors,” AFRPL TR-84-021.
35.
Vaughn
H.
,
1980
, “
Pressurizing a Prestretched Membrane to Form a Paraboloid
,”
Int J Eng Sci
, Vol.
18
, pp.
99
107
.
36.
von Ka´rma´n
T.
,
1910
, “
Festigkeitsproblem im Maschinenbau
,”
Encyk D Math Wiss
, Vol.
IV
, pp.
311
385
.
37.
Weil
N. A.
, and
Newmark
N. M.
,
1955
, “
Large Plastic Deformations of Circular Membranes
,”
J Appl Mech
, Vol.
22
, pp.
533
538
.
38.
Weinitschke, H. J., 1980, “On Axisymmetric Deformations of Nonlinear Elastic Membranes,” In Mechanics Today, Vol. 5, pp. 523–542, Pergamon Press, Oxford.
39.
Weinitschke
H. J.
,
1987
, “
On Finite Displacements of Circular Elastic Membranes
,”
Math Method Appl Sci
Vol.
9
, pp.
76
98
.
40.
Weinitschke
H. J.
,
1989
, “
Stable and Unstable Axisymmetric Solutions for Membranes of Revolution
,”
Appl Mech Rev
Vol.
42
, pp.
S289–S294
S289–S294
.
This content is only available via PDF.
You do not currently have access to this content.