An important issue arising from prior studies of thermosyphon heat exchangers for use in solar water heaters is the need for heat transfer and pressure drop correlations for the laminar, mixed-convection regime in which these many of these heat exchangers operate. In this paper, we present empirical correlations for tube-in-shell heat exchangers with the thermosyphon flow on the shell side. The correlations are determined for uniform heat flux on the tube walls. Ranges of Reynolds and Grashof numbers are 130 to 2,000 and 4 × 105 to 8 × 107, respectively. Nusselt number correlations are presented in a form that combines the contributions of forced and natural convection. Mixed convection dominates forced convection heat transfer in these geometries. Pressure drop is not significantly affected by mixed convection.

1.
Avina, J., Beckman, W. A., and Klein, S. A., 1995, “Simulation of a Natural Convection Heat Exchanger Solar Domestic Hot Water System,” Proceedings, Solar ’95, Annual Conference of the American Solar Energy Society, Minneapolis, MN, R. Campell-Howe and Wilkins-Crowder, B., Vol. Technical Papers, pp.299–304.
2.
Churchill
S. W.
,
1977
, “
A Comprehensive Correlating Equation for Laminar, Assisting, Forced and Free Convection
,”
AIChE
, Vol.
23
, No.
1
, pp.
10
16
.
3.
Dahl
S. D.
, and
Davidson
J. H.
,
1997
, “
Performance and Modeling of Thermosyphon Heat Exchangers for Solar Water Heaters
,”
ASME JOURNAL OF SOLAR ENERGY ENGINEERING
, Vol.
119
, pp.
193
200
.
4.
Davidson, J. H., and Dahl, S. D., 1996, “Issues of Predicting Performance of Thermosyphon Heat Exchangers,” Proceedings, ASME International Solar Energy Conference, San Antonio, TX, pp. 1–8.
5.
Davidson, J. H., Dahl, S. D., and Long, S., 1997, “Testing, Modeling, and Rating of Solar Water Heaters that Use Thermosyphon Heat Exchangers,” Proceedings, 1997 Annual Conference of the American Solar Energy Society, Washington, D.C., ASME, pp. 35–40.
6.
El-Genk
M. S.
,
Bedrose
S. D.
, and
Rao
D. V.
,
1990
a, “
Forced and Combined Convection of Water in a Vertical Seven-Rod Bundle with P/D = 1.38
,”
Int. J. Heat Mass Transfer
, Vol.
33
, No.
6
, pp.
1289
1297
.
7.
El-Genk
M. S.
,
Bedrose
S. D.
, and
Rao
D. V.
,
1990
b, “
Forced and Combined Convection of Water in Rod Bundles
,”
Heat Transfer Engineering
, Vol.
11
, No.
4
, pp.
32
43
.
8.
El-Genk
M. S.
,
Su
B.
, and
Guo
Z.
,
1992
, “
Forced, Combined and Natural Convections of Water in a Vertical Nine-Rod Bundle with a Square Lattice and P/D = 1.5
,”
A.I.Ch.E. Symp. Series
, Vol.
288
, No.
88
, pp.
259
266
.
9.
El-Genk
M. S.
,
Su
B.
, and
Guo
Z.
,
1993
, “
Experimental Studies of Forced, Combined and Natural Convection of Water in Vertical Nine-Rod Bundles with a Square Lattice
,”
Int. J. Heat Mass Transfer
, Vol.
36
, No.
9
, pp.
2359
2374
.
10.
Fraser
K. F.
,
Hollands
K. G. T.
, and
Brunger
A. P.
,
1995
, “
An Empirical Model for Natural Convection Heat Exchangers in SDHW Systems
,”
Solar Energy
, Vol.
55
, No.
2
, pp.
75
84
.
11.
Greif
R.
,
1988
,“
Natural Circulation Loops
,”
ASME Journal of Heat Transfer
, Vol.
110
, pp.
1243
1258
.
12.
Gruszczynski, M. J., and Viskanta, R., 1983, “Heat Transfer from a Vertical Tube Bundle Under Natural Circulation Conditions,” Proceedings, ASME/JSME Thermal Engineering Joint Conference, W. J. Yang, and Mori, Y., Vol. 3, pp.403–410.
13.
Hallinan
K. P.
, and
Viskanta
R.
,
1985
, “
Heat Transfer from a Vertical Tube Bundle Under Natural Circulation Conditions
,”
Int. J. Heat & Fluid Flow
, Vol.
6
, No.
4
, pp.
256
264
.
14.
Kim
S. H.
, and
El-Genk
M. S.
,
1989
, “
Heat Transfer Experiments for Low Flow of Water in Rod Bundles
,”
Int. J. Heat Mass Transfer
, Vol.
32
, No.
7
, pp.
1321
1336
.
15.
Kline
S. J.
, and
McClintock
F. A.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
, Vol.
75
, pp.
3
8
.
16.
Marner
W. J.
, and
Bergles
A. E.
,
1978
, “
Agmentation of Tube-Side Laminar Flow Heat Transfer by Means of Twisted Tape Inserts, Static Mixer Inserts, and Internally Finned Tubes
,”
Heat Transfer
1978, Vol.
2
, pp.
583
588
.
17.
Mertol, A., and Greif, R., 1985, “A Review of Natural Circulation Loops,” Natural Convection, S. Kakac, Aung, W., and Viskanta, R., eds., Hemisphere, New York, pp. 1033–1071.
18.
Metais
B.
, and
Eckert
E. R.
,
1964
, “
Forced, Mixed, and Free Convection Regimes
,”
ASME Journal of Heat Transfer
, Vol.
86
, pp.
295
296
.
19.
Schmid
J.
,
1966
, “
Longitudinal Laminar Flow in an Array of Circular Cylinders
,”
Int. J. Heat Mass Transfer
, Vol.
9
, pp.
925
937
.
20.
Sparrow
E. M.
,
Loeffler
A. L. J.
, and
Hubbard
H. A.
,
1961
, “
Heat Transfer to Longitudinal Laminar Flow Between Cylinders
,”
ASME Journal of Heat Transfer
, Vol.
83
, pp.
415
422
.
21.
Suh
K. Y.
,
Todreas
N. E.
, and
Rohsenow
W. M.
,
1989
a, “
Mixed Convective Low Flow Pressure Drop in Vertical Rod Assemblies: I-Predictive Model and Design Correlation
,”
ASME Journal of Heat Transfer
, Vol.
111
, pp.
956
965
.
22.
Suh
K. Y.
,
Todreas
N. E.
, and
Rohsenow
W. M.
,
1989
a, “
Mixed Convective Low Flow Pressure Drop in Vertical Rod Assemblies; I-Predictive Model and Design Correlation
,”
Journal of Heat Transfer
, Vol.
111
, pp.
956
965
.
23.
SYSTAT. (1992)., SYSTAT (Version 5.2)., Chicago; SYSTAT Inc., SPSS Inc.
24.
Weisman
J.
,
1959
, “
Heat Transfer to Water Flowing Parallel to Tube Bundles
,”
Nucl. Sci. Engng
, Vol.
6
, pp.
78
79
.
25.
Zvirin
Y.
,
1981
, “
A Review of Natural Circulation Loops in Pressurized Water Reactors and Other Systems
,”
Nuclear Eng. and Design
, Vol.
67
, pp.
203
225
.
This content is only available via PDF.
You do not currently have access to this content.