Energy storage is a key technology for many purposes and in particular for air conditioning plants and a successful exploitation of solar energy. Thermal storage devices are usually classified as either variable temperature (“sensible heat”) or constant temperature (“latent heat”) devices. For both models a basic question is to determine the efficiency suitably: Only exergy efficiency appears a proper way. The aim of this paper is to examine exergy efficiency in both variable and constant temperature systems. From a general statement of exergy efficiency by the present author, two types of actual definitions are proposed, depending on the fact that the exergy of the fluid leaving the thermal storage during the charge phase can be either totally lost or utilized elsewhere. In addition, specific remarks are made about the exergy of a system in a periodically varying temperature environment.

1.
Abhat
A.
,
1984
, “
Thermal performance of a finned heat-pipe latent heat store
,”
Int. J. Ambient Energy
, Vol.
5
, pp.
193
206
.
2.
Bejan
A.
,
1978
, “
Two thermodynamic optima in the design of sensible heat units for energy storage
,”
J. Heat Transfer
, Vol.
100
, pp.
708
712
.
3.
Bejan, A., 1982, Entropy Generation through Heat and Fluid Flow, John Wiley and Sons, New York.
4.
Bejan
A.
, and
Schultz
W.
,
1982
, “
Optimum flowrate history for cooldown and energy storage processes
,”
Int. J. Heat Mass Transfer
, Vol.
25
, pp.
1087
1092
.
5.
Bisio
G.
,
1989
, “
On a general statement for efficiency
,”
Chem. Engng. Comm.
, Vol.
81
, pp.
177
195
.
6.
Bisio, G., Magrini, U., and Rubatto, G., 1993, “The expediency of ice-banks—Thermodynamic remarks and applications to modern food plants,” Paper written for the Joint Meeting of Commissions C2, D1, D2 & D3, International Institute of Refrigeration, Fez/Morocco, May 3–7, No. 31, pp. 1–10.
7.
Bisio, G., 1995, “Heat transfer and thermodynamic remarks on blast furnace regenerators—thermal ratio and exergy efficiency,” Proceedings of Eurotherm No. 46, Pisa, July 3–4, pp. 173–180.
8.
Chelghoum
D. E.
,
Bejan
A.
,
1985
, “
Second-law analysis of solar collectors with energy storage capability
,”
ASME JOURNAL OF SOLAR ENERGY ENGINEERING
, Vol.
107
, pp.
244
251
.
9.
Dietrich, E., and Le Goff, P., 1986, “Pompe a` chaleur a` absorption avec stockage incorpore´ de l’exergie—Evaluations e´nerge´tique et e´conomique,” Rev. Ge´n. Therm. Fr., No. 293, pp. 273–287.
10.
Dietz
D.
,
1984
, “
Thermal performance of a heat storage module using calcium chloride hexahydrate
,”
ASME JOURNAL OF SOLAR ENERGY ENGINEERING
, Vol.
106
, pp.
106
111
.
11.
Fiala
W.
,
1981
, “
Exergetische Analyse verschiedenartiger Wa¨rmespeicher bei vera¨nderlicher Umgebungstemperatur
,”
B.W.K.
, Vol.
33
, pp.
482
486
.
12.
Hahne, E., 1986, “Thermal energy storage—Some views on some problems,” Proceedings 8th International Heat Transfer Conference, C. L. Tien, V. P, Carey, and J. K. Ferrel, eds,. Vol. I, Hemisphere Publishing Corp., Washington, DC, pp. 279–292.
13.
Hill
J. E.
, et al.,
1977
, “
A method of testing for rating thermal storage devices based on thermal performance
,”
Solar Energy
, Vol.
19
, pp.
721
732
.
14.
Hollands
K. G. T.
, et al.,
1979
, “
Collector and storage efficiencies in solar heating systems
,”
Solar Energy
, Vol.
23
, pp.
471
478
.
15.
Krane
R. J.
,
1987
, “
A Second Law analysis of the optimum design and operation of thermal energy storage systems
,”
Int. J. Heat Mass Transfer
, Vol.
30
, pp.
43
57
.
16.
Moran, M. J., 1982, Availability Analysis: A Guide to Efficient Energy Use, Prentice-Hall, Englewood Cliffs, NJ.
17.
Moran, M. J., and Keyhani, V., 1982, “Second law analysis of thermal energy storage systems,” Proceedings 7th International Heat Transfer Conference, U. Grigull et al., eds., Vol. VI, Hemisphere Publishing Corp., Washington, DC, pp. 473–478.
18.
Sekulic, D. P., and Krane, R. J., 1992a, “The use of multiple storage elements to improve the second law efficiency of a thermal energy storage system—Part I: Analysis of the storage process,” Proceedings of ECOS ’92, Zaragoza, June 15–18, A. Valero, and G. Tsatsaronis, eds., ASME, New York, pp. 61–66.
19.
Sekulic, D. P., and Krane, R. J., 1992b, “The use of multiple storage elements to improve the second law efficiency of a thermal energy storage system—Part II: Completion of the analysis and presentation of results,” Proceedings of ECOS ’92, Zaragoza, June 15-18, A. Valero, and G. Tsatsaronis, eds., ASME, New York, pp. 67–72.
20.
Taylor, M. J., Krane, R. J., and Parsons, J. R., 1990a, “Second law optimization of a sensible heat thermal energy storage system with a distributed storage element.—Part I: Development of the analytical model,” Proceedings of FLOWERS ’90, Florence, May 28-June 1, S. S. Stecco, and M. J. Moran, eds., Pergamon Press, Oxford, U.K., pp. 885–896.
21.
Taylor, M. J., Krane, R. J., and Parsons, J. R., 1990b, “Second law optimization of a sensible heat thermal energy storage system with a distributed storage element.— Part II: Presentation and interpretation of results,” Proceedings of FLOWERS ’90, Florence, May 28-June 1, S. S. Stecco, and M. J. Moran, eds., Pergamon Press, Oxford, U.K., pp. 897–908.
22.
Wang
J. C. Y.
, et al.,
1984
, “
An analytical study of heat exchanger effectiveness and thermal performance in a solar energy storage system with PCM
,”
ASME JOURNAL OF SOLAR ENERGY ENGINEERING
, Vol.
106
, pp.
231
233
.
This content is only available via PDF.
You do not currently have access to this content.