A new solar receiver latent thermal energy storage module for space-based activities is proposed. It is different from a conventional module (which uses a single phase-change material (PCM)); this module uses a composite configuration of multiple PCMs. A finite element model is presented which simulates the transient cyclic thermal process involved. Computations have been carried out to investigate the potential advantages of a composite multi-PCM store over a single PCM store. Numerical results indicate that variation of the fluid outlet temperature can be significantly reduced by appropriate selection of multiple composite PCMs.

1.
Adebiby, G. A., Hodge, B. K., Steele, W. G., Jalalzadeh, A., and Nsofor, E. C., 1992, “Computer Simulation of a High Temperature Thermal Energy Storage System Employing Multiple Family of Phase-Change Storage Materials,” ASME AES-Vol. 27/HTD-Vol. 228, pp. 1–11.
2.
Bellecci
C.
, and
Conti
M.
,
1993
, “
Phase Change Thermal Storage: Transient Behaviour Analysis of a Solar Receiver/Storage Module Using the Enthalpy Method
,”
Int. J. Heat Mass Transfer
, Vol.
36
, pp.
2157
2163
.
3.
Dalhuijsen
A. J.
, and
Segal
A.
,
1986
, “
Comparison of Finite Element Techniques for Solidification Problems
,”
Int. J. Numer. Meths. Eng.
, Vol.
23
, pp.
1807
1829
.
4.
Farid
M. M.
, and
Kanzawa
A.
,
1989
, “
Thermal Performance of a Heat Storage Module Using PCM’s with Different Melting Temperatures: Mathematical Modeling
,”
ASME Journal of Energy Resource Technology
, Vol.
111
, pp.
152
157
.
5.
Farid
M. M.
,
Kim
Y.
, and
Kanzawa
A.
,
1990
, “
Thermal Performance of a Heat Storage Module Using PCM’s with Different Melting Temperatures: Experimental
,”
ASME Journal of Energy Resource Technology
, Vol.
112
, pp.
125
131
.
6.
Gong, Z. X., Zhang, Y. F., and Mujumdar, A. S., 1991, “Cyclic Phase Change Heat Conduction in Thin Composite Slabs,” Computational Modelling of Free and Moving Boundary Problems, L. C. Wrobel and C. A. Brebbia eds., Computational Mechanics Publications, Vol. 2, pp. 105–119.
7.
Gong, Z. X., and Mujumdar, A. S., 1994, “Cyclical Heat Conduction in Melting and Freezing of Composite Slabs of Different Phase Change Materials,” Proceedings of the 10th Int. Heat Transfer Conf., Vol. 6, pp. 343–348.
8.
Gong, Z. X., and Mujumdar, A. S., 1995, “Enhancement of Energy Charge/Discharge Rates in Composite Slabs of Different Phase Change Materials,” Int. J. Heat Mass Transfer, in press.
9.
Kays, W. M., and Perkins, H. C., 1973, “Forced Convection, internal flow in ducts,” Handbook of Heat Transfer, W. M. Rohsenow and J. P. Hartnett eds., McGraw-Hill, New York.
10.
Kerslake
T. W.
, and
Ibrahim
M. B.
,
1993
, “
Analysis of Thermal Energy Storage Material with Change of Phase Volumetric Effects
,”
ASME JOURNAL OF SOLAR ENERGY ENGINEERING
, Vol.
115
, pp.
22
31
.
11.
Kerslake
T. W.
, and
Ibrahim
M. B.
,
1994
, “
Two-Dimensional Model of a Space Station Freedom Thermal Energy Storage Canister
,”
ASME JOURNAL OF SOLAR ENERGY ENGINEERING
, Vol.
116
, pp.
114
121
.
12.
Lim
J. S.
,
Bejan
A.
, and
Kim
J. H.
,
1992
, “
Thermodynamic Optimization of Phase-Change Energy Storage Using Two or More Materials
,”
ASME Journal of Energy Resources Technology
, Vol.
114
, pp.
84
90
.
13.
Pham
Q. T.
,
1986
, “
The Use of Lumped Capacitance in the Finite-Element Solution of Heat Conduction Problems with Phase Change
,”
Int. J. Heat Mass Transfer
, Vol.
29
, pp.
285
291
.
14.
Strumpf
H. J.
, and
Coombs
M. G.
,
1988
, “
Solar Receiver for the Space Station Freedom Brayton Engine
,”
ASME Journal of Engineering for Gas Turbines and Power
, Vol.
110
, pp.
295
300
.
15.
Strumpf
H. J.
, and
Coombs
M. G.
,
1990
, “
Solar Receiver Experiment for the Space Station Freedom Brayton Engine
,”
ASME JOURNAL OF SOLAR ENERGY ENGINEERING
, Vol.
112
, pp.
12
18
.
16.
Zienkiewicz, O. C., and Taylor, R. L., 1989, The Finite Element Method, McGraw-Hill, London.
This content is only available via PDF.
You do not currently have access to this content.