A solar receiver/reactor has been designed specifically to study high-temperature gas phase chemical reactions using a laser based metrology. It is a cavity-type receiver, lined with stabilized ZrO2, and operated at temperatures up to 2000 K. The gas temperature is measured in situ using the coherent anti-Stokes Raman spectroscopy (CARS) of N2. Optical access for the CARS measurement is accomplished via two side windows, each subtending a 118-mrad cone angle at the center of the cavity, providing enough clearance for the input laser beams and the output signal carrying the temperature information. Two endothermic processes were used for the initial evaluation of this method: the NH3 dissociation into N2 and H2, and the CO2-reforming of CH4 into synthesis gas. The process flow was directly exposed to high solar fluxes in addition to infrared radiation emitted by the hot reactor walls. The laser-based metrology performed satisfactorily in spite of the presence of the intense radiation field. This paper describes in detail the technical aspects of the experimental setup, presents examples of spectra and temperature measurements, and discusses practical problems encountered during experimentation.

This content is only available via PDF.
You do not currently have access to this content.