NASA’s Space Station Freedom proposed hybrid power system includes photovoltaic arrays with nickel hydrogen batteries for energy storage and solar dynamic collectors driving Brayton heat engines with change-of-phase thermal energy storage (TES) devices. A TES device is comprised of multiple metallic, annular canisters which contain a eutectic composition LiF-CaF2 phase change material (PCM) that melts at 1040 K. A moderately sophisticated LiF-CaF2 PCM computer model is being developed in two stages considering first one-dimensional and then two-dimensional canister geometries. One-dimensional model results indicate that the void has a marked effect on the phase change process due to PCM displacement and dynamic void heat transfer resistance. Equally influential are the effects of different boundary conditions and liquid PCM free convection. For the second stage, successful numerical techniques used in the one-dimensional phase change model are extended to a two-dimensional (r,z) PCM containment canister model. A prototypical PCM containment canister is analyzed and the results are discussed.

This content is only available via PDF.
You do not currently have access to this content.