This paper is concerned with the benefits of using phase-change slurries as enhanced heat-transfer/storage working fluids in solar energy and waste heat utilization systems. Literature is cited to show that a slurry containing a phase-change material as the dispersed phase promises to have much higher heat-transfer coefficients than conventional single-phase working fluids. Because of the latent heat, the phase-change slurry also requires lower pumping rates and smaller storage tanks than single-phase fluids for the same energy content. These benefits are documented by comparisons of temperature drops, pumping rates, pumping powers, and the sizes of storage tanks for a generic energy collection system operating with and without a slurry.

This content is only available via PDF.
You do not currently have access to this content.