Abstract

Laser powder bed fusion (LPBF) is a popular additive manufacturing process with many advantages compared with traditional (subtractive) manufacturing. However, ensuring the quality of LPBF parts remains a challenge in the manufacturing industry. This work proposes the use of unsupervised learning, specifically, the k-means clustering method, to identify unique melt pool shapes produced during LPBF manufacturing. Melt pools are a key process signature in LPBF and can assist in the evaluation of process quality. k-means is employed multiple times sequentially to produce clusters of melt pools, and the silhouette value is used to identify the optimal number of clusters. The clusters produced by k-means are used as labels to train a deep neural network to classify the melt pool shapes. By inputting the melt pool image and the corresponding LPBF machine process parameters into the neural network, the neural network identifies the melt pool shape to aid human analysis and provide insight into part quality. The trained neural network is interpreted using explainable artificial intelligence (XAI) methods to investigate the relationships between process parameters and the melt pool shape. Using layer-wise relevance propagation, the process parameters that most significantly influence the melt pool shapes are identified. The relationship between process parameters and melt pool shapes can be useful for selecting the process parameters to produce the desired melt pool shapes. In summary, this study describes an approach that combines unsupervised machine learning and XAI methods to effectively enable the analysis and interpretation of melt pools.

References

1.
Chowdhury
S.
,
Yadaiah
N.
,
Prakash
C.
,
Ramakrishna
S.
,
Dixit
S.
,
Gupta
L. R.
, and
Buddhi
D.
, “
Laser Powder Bed Fusion: A State-of-the-Art Review of the Technology, Materials, Properties & Defects, and Numerical Modelling
,”
Journal of Materials Research and Technology
20
(
2022
):
2109
2172
, https://doi.org/10.1016/j.jmrt.2022.07.121
2.
Tofail
S. A. M.
,
Koumoulos
E. P.
,
Bandyopadhyay
A.
,
Bose
S.
,
O’Donoghue
L.
, and
Charitidis
C.
, “
Additive Manufacturing: Scientific and Technological Challenges, Market Uptake and Opportunities
,”
Materials Today
21
, no. 
1
(January–February
2018
):
22
37
, https://doi.org/10.1016/j.mattod.2017.07.001
3.
King
W. E.
,
Anderson
A. T.
,
Ferencz
R. M.
,
Hodge
N. E.
,
Kamath
C.
,
Khairallah
S. A.
, and
Rubenchik
A. M.
, “
Laser Powder Bed Fusion Additive Manufacturing of Metals; Physics, Computational, and Materials Challenges
,”
Applied Physics Reviews
2
, no. 
4
(December
2015
): 041304, https://doi.org/10.1063/1.4937809
4.
Du
C.
,
Zhao
Y.
,
Jiang
J.
,
Wang
Q.
,
Wang
H.
,
Li
N.
, and
Sun
J.
, “
Pore Defects in Laser Powder Bed Fusion: Formation Mechanism, Control Method, and Perspectives
,”
Journal of Alloys and Compounds
944
(
2023
): 169215, https://doi.org/10.1016/j.jallcom.2023.169215
5.
Chia
H. Y.
,
Wu
J.
,
Wang
X.
, and
Yan
W.
, “
Process Parameter Optimization of Metal Additive Manufacturing: A Review and Outlook
,”
Journal of Materials Informatics
2
, no. 
4
(October
2022
): 16, https://doi.org/10.20517/jmi.2022.18
6.
Wang
J.
,
Zhu
R.
,
Liu
Y.
, and
Zhang
L.
, “
Understanding Melt Pool Characteristics in Laser Powder Bed Fusion: An Overview of Single- and Multi-track Melt Pools for Process Optimization
,”
Advanced Powder Materials
2
, no. 
4
(October
2023
): 100137, https://doi.org/10.1016/j.apmate.2023.100137
7.
Thompson
A.
,
Maskery
I.
, and
Leach
R. K.
, “
X-ray Computed Tomography for Additive Manufacturing: A Review
,”
Measurement Science and Technology
27
, no. 
7
(July
2016
): 072001, https://doi.org/10.1088/0957-0233/27/7/072001
8.
Kim
C.
,
Yin
H.
,
Shmatok
A.
,
Prorok
B. C.
,
Lou
X.
, and
Matlack
K. H.
, “
Ultrasonic Nondestructive Evaluation of Laser Powder Bed Fusion 316L Stainless Steel
,”
Additive Manufacturing
38
(
2021
): 101800, https://doi.org/10.1016/j.addma.2020.101800
9.
McCann
R.
,
Obeidi
M. A.
,
Hughes
C.
,
McCarthy
É.
,
Egan
D. S.
,
Vijayaraghavan
R. K.
,
Joshi
A. M.
, et al., “
In-Situ Sensing, Process Monitoring and Machine Control in Laser Powder Bed Fusion: A Review
,”
Additive Manufacturing
45
(
2021
): 102058, https://doi.org/10.1016/j.addma.2021.102058
10.
Drissi-Daoudi
R.
,
Masinelli
G.
,
de Formanoir
C.
,
Wasmer
K.
,
Jhabvala
J.
, and
Logé
R. E.
, “
Acoustic Emission for the Prediction of Processing Regimes in Laser Powder Bed Fusion, and the Generation of Processing Maps
,”
Additive Manufacturing
67
(
2023
): 103484, https://doi.org/10.1016/j.addma.2023.103484
11.
Gordon
J. V.
,
Narra
S. P.
,
Cunningham
R. W.
,
Liu
H.
,
Chen
H.
,
Suter
R. M.
,
Beuth
J. L.
, and
Rollett
A. D.
, “
Defect Structure Process Maps for Laser Powder Bed Fusion Additive Manufacturing
,”
Additive Manufacturing
36
(
2020
): 101552, https://doi.org/10.1016/j.addma.2020.101552
12.
Tang
M.
,
Pistorius
P. C.
, and
Beuth
J. L.
, “
Prediction of Lack-of-Fusion Porosity for Powder Bed Fusion
,”
Additive Manufacturing
14
(
2017
):
39
48
, https://doi.org/10.1016/j.addma.2016.12.001
13.
Olleak
A.
and
Xi
Z.
, “
Efficient LPBF Process Simulation Using Finite Element Modeling with Adaptive Remeshing for Distortions and Residual Stresses Prediction
,”
Manufacturing Letters
24
(
2020
):
140
144
, https://doi.org/10.1016/j.mfglet.2020.05.002
14.
Bayat
M.
,
Mohanty
S.
, and
Hattel
J. H.
, “
Multiphysics Modelling of Lack-of-Fusion Voids Formation and Evolution in IN718 Made by Multi-track/Multi-layer L-PBF
,”
International Journal of Heat and Mass Transfer
139
(
2019
):
95
114
, https://doi.org/10.1016/j.ijheatmasstransfer.2019.05.003
15.
Wong
V. W. H.
,
Ferguson
M.
,
Law
K. H.
,
Lee
Y.-T. T.
, and
Witherell
P.
, “
Segmentation of Additive Manufacturing Defects Using U-Net
,”
Journal of Computing and Information Science in Engineering
22
, no. 
3
(June
2022
): 031005, https://doi.org/10.1115/1.4053078
16.
Ansari
M. A.
,
Crampton
A.
,
Garrard
R.
,
Cai
B.
, and
Attallah
M.
, “
A Convolutional Neural Network (CNN) Classification to Identify the Presence of Pores in Powder Bed Fusion Images
,”
International Journal of Advanced Manufacturing Technology
120
, no. 
7
(June
2022
):
5133
5150
, https://doi.org/10.1007/s00170-022-08995-7
17.
Zhang
Y.
,
Shapiro
V.
, and
Witherell
P.
, “
A Neighborhood-Based Neural Network for Melt Pool Prediction and Control
,” in
ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
(
New York: American Society of Mechanical Engineers
,
2020
), V009T09A026, https://doi.org/10.1115/DETC2020-22549
18.
Akbari
P.
,
Ogoke
F.
,
Kao
N.-Y.
,
Meidani
K.
,
Yeh
C.-Y.
,
Lee
W.
, and
Barati Farimani
A.
. “
MeltpoolNet: Melt Pool Characteristic Prediction in Metal Additive Manufacturing Using Machine Learning
,”
Additive Manufacturing
55
(
2022
): 102817, https://doi.org/10.1016/j.addma.2022.102817
19.
Fathizadan
S.
,
Ju
F.
, and
Lu
Y.
, “
Deep Representation Learning for Process Variation Management in Laser Powder Bed Fusion
,”
Additive Manufacturing
42
(
2021
): 101961, https://doi.org/10.1016/j.addma.2021.101961
20.
Scime
L.
and
Beuth
J.
, “
Using Machine Learning to Identify In-Situ Melt Pool Signatures Indicative of Flaw Formation in a Laser Powder Bed Fusion Additive Manufacturing Process
,”
Additive Manufacturing
25
(
2019
):
151
165
, https://doi.org/10.1016/j.addma.2018.11.010
21.
Sato
M. M.
,
Wong
V. W. H.
,
Law
K. H.
,
Yeung
H.
,
Yang
Z.
,
Lane
B.
, and
Witherell
P.
, “
Anomaly Detection of Laser Powder Bed Fusion Melt Pool Images Using Combined Unsupervised and Supervised Learning Methods
,” in
ASME 2022 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
(
New York
:
American Society of Mechanical Engineers
,
2022
), V002T02A070, https://doi.org/10.1115/DETC2022-88313
22.
Simonyan
K.
,
Vedaldi
A.
, and
Zisserman
A.
, “
Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps
” (paper presentation, Second International Conference on Learning Representations, Alberta, CA, April 14–16,
2014
), https://doi.org/10.48550/arXiv.1312.6034
23.
Selvaraju
R. R.
,
Cogswell
M.
,
Das
A.
,
Vedantam
R.
,
Parikh
D.
, and
Batra
D.
, “
Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization
,”
International Journal of Computer Vision
128
, no. 
2
(February
2020
):
336
359
, https://doi.org/10.1007/s11263-019-01228-7
24.
Lundberg
S.
and
Lee
S.-I.
, “
A Unified Approach to Interpreting Model Predictions
,” in
NIPS’17: Proceedings of the 31st International Conference on Neural Information Processing Systems
, ed.
von Luxburg
U.
,
Guyon
I.
,
Bengio
S.
,
Wallach
H.
, and
Fergus
R.
(
Red Hook, NY
:
Curran Associates
,
2017
),
4768
4777
.
25.
Ribeiro
M.
,
Singh
S.
, and
Guestrin
C.
, “‘
Why Should I Trust You?’: Explaining the Predictions of Any Classifier
,” in
2016 Conference of the North American Chapter of the Association for Computational Linguistics: Demonstrations
(
Kerrville, TX
:
Association for Computational Linguistics
,
2016
),
97
101
, https://doi.org/10.18653/v1/N16-3020
26.
Lee
J. A.
,
Sagong
M. J.
,
Jung
J.
,
Kim
E. S.
, and
Kim
H. S.
, “
Explainable Machine Learning for Understanding and Predicting Geometry and Defect Types in Fe-Ni Alloys Fabricated by Laser Metal Deposition Additive Manufacturing
,”
Journal of Materials Research and Technology
22
(
2023
):
413
423
, https://doi.org/10.1016/j.jmrt.2022.11.137
27.
Pandiyan
V.
,
Wróbel
R.
,
Leinenbach
C.
, and
Shevchik
S.
, “
Optimizing In-Situ Monitoring for Laser Powder Bed Fusion Process: Deciphering Acoustic Emission and Sensor Sensitivity with Explainable Machine Learning
,”
Journal of Materials Processing Technology
321
(
2023
): 118144, https://doi.org/10.1016/j.jmatprotec.2023.118144
28.
Pratap
A.
,
Sardana
N.
,
Utomo
S.
,
John
A.
,
Karthikeyan
P.
, and
Hsiung
P.-A.
, “
Analysis of Defect Associated with Powder Bed Fusion with Deep Learning and Explainable AI
,” in
2023 15th International Conference on Knowledge and Smart Technology (KST)
(
Piscataway, NJ
:
Institute of Electrical and Electronics Engineers
,
2023
),
1
6
, https://doi.org/10.1109/KST57286.2023.10086905
29.
Sato
M. M.
,
Wong
V. W. H.
,
Law
K. H.
,
Yeung
H.
, and
Witherell
P.
, “
Explainability of Laser Powder Bed Fusion Melt Pool Classification Using Deep Learning
,” in
ASME 2023 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
(
New York
:
American Society of Mechanical Engineers
,
2023
), V002T02A054, https://doi.org/10.1115/DETC2023-109137
30.
Ko
H.
,
Witherell
P.
,
Lu
Y.
,
Kim
S.
, and
Rosen
D. W.
, “
Machine Learning and Knowledge Graph Based Design Rule Construction for Additive Manufacturing
,”
Additive Manufacturing
37
(
2021
): 101620, https://doi.org/10.1016/j.addma.2020.101620
31.
Lloyd
S.
, “
Least Squares Quantization in PCM
,”
IEEE Transactions on Information Theory
28
, no. 
2
(March
1982
):
129
137
, https://doi.org/10.1109/TIT.1982.1056489
32.
Sculley
D.
, “
Web-Scale K-Means Clustering
,” in
19th International Conference on World Wide Web
(
New York
:
Association for Computing Machinery
,
2010
),
1177
1178
, https://doi.org/10.1145/1772690.1772862
33.
Rousseeuw
P. J.
, “
Silhouettes: A Graphical Aid to the Interpretation and Validation of Cluster Analysis
,”
Journal of Computational and Applied Mathematics
20
(
1987
):
53
65
, https://doi.org/10.1016/0377-0427(87)90125-7
34.
Xiong
H.
,
Wu
J.
, and
Chen
J.
, “
K-Means Clustering Versus Validation Measures: A Data-Distribution Perspective
,”
IEEE Transactions on Systems, Man, and Cybernetics. Part B, (Cybernetics)
39
, no. 
2
(April
2009
):
318
331
, https://doi.org/10.1109/TSMCB.2008.2004559
35.
Liang
J.
,
Bai
L.
,
Dang
C.
, and
Cao
F.
, “
The K-Means-Type Algorithms Versus Imbalanced Data Distributions
,”
IEEE Transactions on Fuzzy Systems
20
, no. 
4
(August
2012
):
728
745
, https://doi.org/10.1109/TFUZZ.2011.2182354
36.
van der Maaten
L.
and
Hinton
G.
, “
Visualizing Data Using T-SNE
,”
Journal of Machine Learning Research
9
, no. 
86
(November
2008
):
2579
2605
.
37.
Scime
L.
and
Beuth
J.
, “
A Multi-scale Convolutional Neural Network for Autonomous Anomaly Detection and Classification in a Laser Powder Bed Fusion Additive Manufacturing Process
,”
Additive Manufacturing
24
(
2018
):
273
286
, https://doi.org/10.1016/j.addma.2018.09.034
38.
Zhang
B.
,
Liu
S.
, and
Shin
Y. C.
. “
In-Process Monitoring of Porosity during Laser Additive Manufacturing Process
,”
Additive Manufacturing
28
(
2019
):
497
505
, https://doi.org/10.1016/j.addma.2019.05.030
39.
Bach
S.
,
Binder
A.
,
Montavon
G.
,
Klauschen
F.
,
Müller
K.-R.
, and
Samek
W.
, “
On Pixel-Wise Explanations for Non-linear Classifier Decisions by Layer-Wise Relevance Propagation
,”
PLoS One
10
, no. 
7
(July
2015
): e0130140, https://doi.org/10.1371/journal.pone.0130140
40.
Montavon
G.
,
Binder
A.
,
Lapuschkin
S.
,
Samek
W.
, and
Müller
K.-R.
, “
Layer-Wise Relevance Propagation: An Overview
,” in
Explainable AI: Interpreting, Explaining and Visualizing Deep Learning
, ed.
Samek
W.
,
Montavon
G.
,
Vedaldi
A.
,
Hansen
L. K.
, and
Müller
K.-R.
(
Cham, Switzerland
:
Springer Cham
,
2019
),
193
209
, https://doi.org/10.1007/978-3-030-28954-6_10
41.
Lane
B. M.
,
Mekhontsev
S.
,
Grantham
S. E.
,
Vlasea
M.
,
Whiting
J. G.
,
Yeung
H.
,
Fox
J. C.
, et al., “
Design, Developments, and Results from the NIST Additive Manufacturing Metrology Testbed (AMMT)
,” in
Solid Freeform Fabrication Symposium
(
Gaithersburg, MD
:
National Institute of Standards and Technology
,
2016
),
1145
1160
.
42.
Lane
B.
and
Yeung
H.
, “
Process Monitoring Dataset from the Additive Manufacturing Metrology Testbed (AMMT): ‘Three-Dimensional Scan Strategies,’
Journal of Research of the National Institute of Standards and Technology
124
, no. 
124033
(November
2019
):
1
14
, https://doi.org/10.6028/jres.124.033
43.
Lane
B.
and
Yeung
H.
, “
Process Monitoring Dataset from the Additive Manufacturing Metrology Testbed (AMMT): 3D Scan Strategies
,” NIST,
2019
, http://web.archive.org/web/20240226205814/https://data.nist.gov/pdr/lps/85196AB9232E7202E053245706813DFA2044
44.
Yeung
H.
and
Lane
B.
, “
A Residual Heat Compensation Based Scan Strategy for Powder Bed Fusion Additive Manufacturing
,”
Manufacturing Letters
25
(August
2020
):
56
59
, https://doi.org/10.1016/j.mfglet.2020.07.005
45.
He
K.
,
Zhang
X.
,
Ren
S.
, and
Sun
J.
, “
Deep Residual Learning for Image Recognition
,” in
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
(
Piscataway, NJ
:
Institute of Electrical and Electronics Engineers
,
2016
),
770
778
, https://doi.org/10.1109/CVPR.2016.90
46.
Deng
J.
,
Dong
W.
,
Socher
R.
,
Li
L.-J.
,
Li
K.
, and
Fei-Fei
L.
, “
ImageNet: A Large-Scale Hierarchical Image Database
,” in
2009 IEEE Conference on Computer Vision and Pattern Recognition
(
Piscataway, NJ
:
Institute of Electrical and Electronics Engineers
,
2009
),
248
255
, https://doi.org/10.1109/CVPR.2009.5206848
47.
Glorot
X.
and
Bengio
Y.
, “
Understanding the Difficulty of Training Deep Feedforward Neural Networks
,”
The Journal of Machine Learning Research
9
(
2010
):
249
256
.
48.
Kingma
D. P.
and
Ba
J.
, “
Adam: A Method for Stochastic Optimization
” (paper presentation, Third International Conference on Learning Representations, San Diego, CA, May 7–9,
2015
).
This content is only available via PDF.
You do not currently have access to this content.