Abstract

Investment casting (IC) is the most precise and second most widely employed casting process after sand casting. Despite its huge application potential, the process has certain inherent techno-commercial drawbacks, such as taking a long time to market, poor material efficiency, high specific energy consumption, continuous human resource requirements, environmental emissions, etc. The development of tooling for IC processes is found to be the prime cause of the drawbacks. To overcome these drawbacks, the rapid prototyping (RP)-based tooling development (also called rapid tooling [RT]) approach has the potential to deal with the limitations of the IC. However, the performance and sustainability of the RP-based tooling need to be studied for their commercial level acceptance over traditional hard tooling. Authors in this review paper have comprehensively reviewed the research works related to sustainability analysis of IC tooling developed through RP processes. Most research studies focus on specific energy consumption or life cycle analysis for sustainability assessment of RT-IC. Manufacturing lead time, production cost, and surface finish are the most investigated parameters for RT-IC. The review highlighted that through the RT approach, lead time for product development can be reduced from months to weeks, overall cost savings of 50–90 % can be achieved, and environmental risk could be reduced up to 50 %. Moreover, it is also observed that fused deposition modeling is the first choice for the RT process, whereas acrylonitrile butadiene styrene and polylactic acid are the most frequently used materials for RT-based IC tooling development at the present time. Most of the research on RT is focused on energy consumption analysis, whereas operator safety and personal health, like social indicators, need further research attention. To understand the current research trends, a decision matrix has been prepared from the key research papers with a close resemblance to the theme of the current review paper.

References

1.
United Nations Department of Economic and Social Affairs “
The 17 Goals: Sustainable Development
,”
United Nations
,
2015
, https://web.archive.org/web/20230302012206/https%3A%2F%2Fsdgs.un.org%2Fgoals
2.
Ravi
B.
and
Datta
G. L.
, “
Metal Casting: Back to Future
” (paper presentation, Proceedings of the 52nd Indian Foundry Congress, Hyderabad, India, February
2004
).
3.
Gebler
M.
,
Schoot Uiterkamp
A. J. M.
, and
Visser
C.
, “
A Global Sustainability Perspective on 3D Printing Technologies
,”
Energy Policy
74
(November
2014
):
158
167
, https://doi.org/10.1016/j.enpol.2014.08.033
4.
Moldavska
A.
and
Welo
T.
, “
The Concept of Sustainable Manufacturing and Its Definitions: A Content-Analysis Based Literature Review
,”
Journal of Cleaner Production
166
(November
2017
):
744
755
, https://doi.org/10.1016/j.jclepro.2017.08.006
5.
The Organisation for Economic Co-operation and Development (OECD) “
About Sustainable Manufacturing and the Toolkit
,”
OECD
, https://web.archive.org/web/20230302013551/https%3A%2F%2Fwww.oecd.org%2Finnovation%2Fgreen%2Ftoolkit%2Faboutsustainablemanufacturingandthetoolkit.htm
6.
Fava
J.
,
Consoli
F.
,
Denison
R.
,
Dickson
K.
,
Mohin
T.
, and
Vigon
B.
, eds.,
A Conceptual Framework for Life-Cycle Impact Assessment
(
Pensacola, FL
:
Society of Environmental Toxicology and Chemistry and SETAC Foundation for Environmental Education, Inc.
,
1993
).
7.
United Nations Environment Programme (UNEP)
Life Cycle Assessment: What It Is and How to Do It
(Paris: United Nations Environment Programme,
1996
), https://web.archive.org/web/20230303165203/http://www.sciencenetwork.com/lca/unep_guide_to_lca.pdf
8.
Goedkoop
M.
,
Heijungs
R.
,
Huijbregts
M.
,
De Schryver
A.
,
Struijs
J.
, and
Van Zelm
R.
,
A Life Cycle Impact Assessment Method which Comprises Harmonised Category Indicators at the Midpoint and the Endpoint Level
(
The Hague, the Netherlands
:
Ministerie van Volkshuisvesting
,
2008
).
9.
Mahrabi
H. A.
,
Jolly
M. R.
, and,
Salonitis
K.
, “
Methods of Reducing Materials’ Waste and Saving Energy in Investment Casting
,” in
Shape Casting: Sixth International Symposium
, ed.
Tiryakioğlu
M.
,
Jolly
M.
, and
Byczynski
G.
(
Cham, Switzerland
:
Springer
,
2016
),
69
76
.
10.
Shivappa
D. N.
,
Harisha
K.
,
Prasad
A. J. K.
, and
Manjunath
R.
, “
Studies on Recyclability of Investment Casting Wax Formulation - An Experimental Study
,”
Recent Advances in Mechanical Engineering and Mechanics
60
, no. 
6
(June
2014
):
118
124
.
11.
Cheah
C. M.
,
Chua
C. K.
,
Lee
C. W.
,
Feng
C.
, and
Totong
K.
, “
Rapid Prototyping and Tooling Techniques: A Review of Applications for Rapid Investment Casting
,”
The International Journal of Advanced Manufacturing Technology
25
, no. 
3
(February
2005
):
308
320
, https://doi.org/10.1007/s00170-003-1840-6
12.
Rao
P. N.
,
Lerner
Y.
, and
Kouznetsov
V.
, “
Rapid Prototyping Applications in Metal Casting
,”
Journal - The Institution of Engineers Malaysia
64
, no. 
3
(
2003
):
1
7
.
13.
Jones
S.
and
Yuan
C.
, “
Advances in Shell Moulding for Investment Casting
,”
Journal of Materials Processing Technology
135
, nos. 
2–3
(April
2003
):
258
265
, https://doi.org/10.1016/S0924-0136(02)00907-X
14.
Di Foggia
M.
and
D’Addona
D. M.
, “
Identification of Critical Key Parameters and Their Impact to Zero-Defect Manufacturing in the Investment Casting Process
,”
Procedia CIRP
12
(
2013
):
264
269
, https://doi.org/10.1016/j.procir.2013.09.046
15.
Stephens
R. D.
,
Wheeler
C. S.
, and
Pryor
M.
,
Life Cycle Assessment of Aluminum Casting Processes, SAE Technical Paper 2001-01-3726
(
Warrendale, PA
:
SAE International
,
2001
), https://doi.org/10.4271/2001-01-3726
16.
Pattnaik
S.
,
Karunakar
D. B.
, and
Jha
P. K.
, “
Developments in Investment Casting Process—A Review
,”
Journal of Materials Processing Technology
212
, no. 
11
(November
2012
):
2332
2348
, https://doi.org/10.1016/j.jmatprotec.2012.06.003
17.
Gutowski
T.
,
Jiang
S.
,
Cooper
D.
,
Corman
G.
,
Hausmann
M.
,
Manson
J.-A.
,
Schudeleit
T.
, et al., “
Note on the Rate and Energy Efficiency Limits for Additive Manufacturing
,”
Journal of Industrial Ecology
21
, no. 
S1
(November
2017
):
S69
S79
, https://doi.org/10.1111/jiec.12664
18.
Wohlers Report 2017: 3D Printing and Additive Manufacturing State of the Industry: Annual Worldwide Progress Report
(Fort Collins, CO: Wohlers Associates,
2017
).
19.
Gordon
R.
, “
Trends in Commercial 3D Printing and Additive Manufacturing
,”
3D Printing and Additive Manufacturing
2
, no. 
2
(
2015
):
89
90
, https://doi.org/10.1089/3dp.2015.28999.rgo
20.
Pal
D. K.
,
Ravi
B.
,
Bhargava
L. S.
, and
Chandrasekhar
U.
, “
Rapid Casting Development Using Reverse Engineering, Rapid Prototyping and Process Simulation
,”
Indian Foundry Journal
51
, no. 
4
(
2005
):
1
17
.
21.
Pal
D. K.
,
Ravi
B.
, and
Bhargava
L. S.
, “
E-Manufacturing One-Off Intricate Castings Using Rapid Prototyping Technology
” (paper presentation, International Conference on E-Manufacturing, Bhopal, India, November 17–19,
2002
), https://doi.org/10.1080/17452750903438676
22.
Pal
D. K.
,
Ravi
B.
, and
Bhargava
L. S.
, “
Rapid Tooling Route Selection for Metal Casting Using QFD-ANP Methodology
,”
International Journal of Computer Integrated Manufacturing
20
, no. 
4
(
2007
):
338
354
, https://doi.org/10.1080/09511920600883229
23.
Kuczko
W.
,
Wichniarek
R.
,
Górski
F.
,
Buń
P.
, and
Zawadzki
P.
, “
Application of Additively Manufactured Polymer Composite Prototypes in Foundry
,”
Advances in Science and Technology
9
, no. 
26
(
2015
):
20
27
, https://doi.org/10.12913/22998624/2360
24.
Khan
M. A. A.
and
Sheikh
A. K.
, “
Simulation Tools in Enhancing Metal Casting Productivity and Quality: A Review
,”
Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture
230
, no. 
10
(October
2016
):
1799
1817
, https://doi.org/10.1177/0954405416640183
25.
Kuo
C.-C.
,
Chen
W.-H.
,
Zhang
J.-W.
,
Tsai
D.-A.
,
Cao
Y.-L.
, and
Juang
B.-Y.
, “
A New Method of Manufacturing a Rapid Tooling with Different Cross-Sectional Cooling Channels
,”
The International Journal of Advanced Manufacturing Technology
92
, no. 
9
(October
2017
):
3481
3487
, https://doi.org/10.1007/s00170-017-0423-x
26.
Saleeby
K.
,
Feldhausen
T.
,
Love
L.
, and
Kurfess
T.
, “
Rapid Retooling for Emergency Response with Hybrid Manufacturing
,”
Smart and Sustainable Manufacturing Systems
4
, no. 
3
(December
2020
):
245
249
, https://doi.org/10.1520/SSMS20200050
27.
Marwah
O. M. F.
,
Sharif
S.
,
Ibrahim
M.
,
Mohamad
E. J.
, and
Idris
M. H.
, “
Direct Rapid Prototyping Evaluation on Multijet and Fused Deposition Modeling Patterns for Investment Casting
,”
Proceedings of the Institution of Mechanical Engineers, Part L, Journal of Materials: Design and Applications
230
, no. 
5
(October
2016
):
949
958
, https://doi.org/10.1177/1464420715590602
28.
Boparai
K. S.
,
Singh
R.
, and
Singh
H.
, “
Development of Rapid Tooling Using Fused Deposition Modeling: A Review
,”
Rapid Prototyping Journal
22
, no. 
2
(
2016
):
281
299
, https://doi.org/10.1108/RPJ-04-2014-0048
29.
Singh
D.
,
Singh
R.
, and
Boparai
K. S.
, “
Development and Surface Improvement of FDM Pattern Based Investment Casting of Biomedical Implants: A State of Art Review
,”
Journal of Manufacturing Processes
31
(January
2018
):
80
95
, https://doi.org/10.1016/j.jmapro.2017.10.026
30.
Liu
W.
,
Zhu
Z.
, and
Ye
S.
, “
Industrial Case Studies of Design for Plastic Additive Manufacturing for End-Use Consumer Products
,”
3D Printing and Additive Manufacturing
6
, no. 
6
(December
2019
):
281
292
, https://doi.org/10.1089/3dp.2019.0079
31.
Ravi
B.
and
Pal
D. K.
, “
Rapid Casting Development
” (paper presentation, Rapid Manufacturing Seminar, TEAMTECH, Bangalore, India, February 28–March 2,
2006
), https://doi.org/https://web.archive.org/web/20230331024732/https://www.researchgate.net/profile/B-Ravi-2/publication/268290249_Rapid_Casting_Development/links/54ec7efb0cf28f3e65341989/Rapid-Casting-Development.pdf
32.
Parvanda
R.
,
Kala
P.
, and
Sharma
V.
, “
Bibliometric Analysis-Based Review of Fused Deposition Modeling 3D Printing Method (1994–2020)
,”
3D Printing and Additive Manufacturing
. Published ahead of print, August 2,
2021
, https://doi.org/10.1089/3dp.2021.0046
33.
Vaezi
M.
,
Chianrabutra
S.
,
Mellor
B.
, and
Yang
S.
, “
Multiple Material Additive Manufacturing – Part 1: A Review
,”
Virtual and Physical Prototyping
8
, no. 
1
(
2013
):
19
50
, https://doi.org/10.1080/17452759.2013.778175
34.
Kang
K.
,
Park
J.
,
Hyoung
S.
,
Oh
J. Y.
,
Singh
R.
,
Gupta
M. K.
,
Choudhari
C. M.
, et al., “
Effect of Process Parameters on Surface Roughness of Hybrid Investment Casting
,”
Rapid Prototyping Journal
2
, no. 
1
(
2016
):
225
239
.
35.
Sama
S. R.
,
Wang
J.
, and
Manogharan
G.
, “
Non-conventional Mold Design for Metal Casting Using 3D Sand-Printing
,”
Journal of Manufacturing Processes
34
, Part B (August
2018
):
765
775
, https://doi.org/10.1016/j.jmapro.2018.03.049
36.
Petrovic
V.
,
Vicente Haro Gonzalez
J.
,
Jordá Ferrando
O.
,
Delgado Gordillo
J.
,
Ramón Blasco Puchades
J.
, and
Portolés Griñan
L.
, “
Additive Layered Manufacturing: Sectors of Industrial Application Shown through Case Studies
,”
International Journal of Production Research
49
, no. 
4
(
2011
):
1061
1079
, https://doi.org/10.1080/00207540903479786
37.
Gardan
J.
, “
Additive Manufacturing Technologies: State of the Art and Trends
,”
International Journal of Production Research
54
, no. 
10
(
2016
):
3118
3132
, https://doi.org/10.1080/00207543.2015.1115909
38.
Short
D. B.
,
Volk
D.
,
Badger
P. D.
,
Melzer
J.
,
Salerno
P.
, and
Sirinterlikci
A.
, “
3D Printing (Rapid Prototyping) Photopolymers: An Emerging Source of Antimony to the Environment
,”
3D Printing and Additive Manufacturing
1
, no. 
1
(March
2014
):
24
33
, https://doi.org/10.1089/3dp.2013.0001
39.
Wang
S.
,
Miranda
A. G.
, and
Shih
C.
, “
A Study of Investment Casting with Plastic Patterns
,”
Materials and Manufacturing Processes
25
, no. 
12
(
2010
):
1482
1488
, https://doi.org/10.1080/10426914.2010.529585
40.
Kumar
S.
and
Karunakar
D. B.
, “
Comparative Study of Conventional and Glass Fiber Modified Ceramic Shells
,”
Materials and Manufacturing Processes
37
, no. 
7
(
2022
):
792
800
, https://doi.org/10.1080/10426914.2021.2001501
41.
Morsiya
C. V.
and
Pandya
S. N.
, “
Recent Advancements in Hybrid Investment Casting Process—A Review
,” in
Recent Advances in Manufacturing Processes and Systems: Select Proceedings of RAM 2021
, ed.
Dave
H. K.
,
Dixit
U. S.
, and
Nelecu
D.
(
Singapore
:
Springer
,
2022
),
817
831
, https://doi.org/10.1007/978-981-16-7787-8_65
42.
Harun
W. S. W.
,
Sharif
S.
,
Idris
M. H.
, and
Kadirgama
K.
, “
Characteristic Studies of Collapsibility of ABS Patterns Produced from FDM for Investment Casting
,”
Materials Research Innovations
13
, no. 
3
(
2009
):
340
343
, https://doi.org/10.1179/143307509X441513
43.
Chua
C. K.
,
Feng
C.
,
Lee
C. W.
, and
Ang
G. Q.
, “
Rapid Investment Casting: Direct and Indirect Approaches via Model Maker II
,”
The International Journal of Advanced Manufacturing Technology
25
, no. 
1
(January
2005
):
26
32
, https://doi.org/10.1007/s00170-004-1865-5
44.
Jain
P.
and
Kuthe
A. M.
, “
Feasibility Study of Manufacturing Using Rapid Prototyping: FDM Approach
,”
Procedia Engineering
63
(
2013
):
4
11
, https://doi.org/10.1016/j.proeng.2013.08.275
45.
Singh
N.
,
Singh
R.
,
Ahuja
I. P. S.
,
Farina
I.
, and
Fraternali
F.
, “
Metal Matrix Composite from Recycled Materials by Using Additive Manufacturing Assisted Investment Casting
,”
Composite Structures
207
(January
2019
):
129
135
, https://doi.org/10.1016/j.compstruct.2018.09.072
46.
Singh
S.
and
Singh
R.
, “
Fused Deposition Modelling Based Rapid Patterns for Investment Casting Applications: A Review
,”
Rapid Prototyping Journal
22
, no. 
1
(January
2016
):
123
143
, https://doi.org/10.1108/RPJ-02-2014-0017
48.
Shuaib
M.
,
Seevers
D.
,
Zhang
X.
,
Badurdeen
F.
,
Rouch
K. E.
, and
Jawahir
I. S.
, “
Product Sustainability Index (ProdSI)
,”
Journal of Industrial Ecology
18
, no. 
4
(August
2014
):
491
507
, https://doi.org/10.1111/jiec.12179
49.
Ahmad
S.
and
Wong
K. Y.
, “
Sustainability Assessment in the Manufacturing Industry: A Review of Recent Studies
,”
Benchmarking
25
, no. 
8
(
2018
):
3162
3179
, https://doi.org/10.1108/BIJ-08-2017-0214
50.
Badurdeen
F.
and
Jawahir
I. S.
, “
Strategies for Value Creation through Sustainable Manufacturing
,”
Procedia Manufacturing
8
(
2017
):
20
27
, https://doi.org/10.1016/j.promfg.2017.02.002
51.
Abdul Rashid
S. H.
,
Evans
S.
, and
Longhurst
P.
, “
A Comparison of Four Sustainable Manufacturing Strategies
,”
International Journal of Sustainable Engineering
1
, no. 
3
(
2008
):
214
229
, https://doi.org/10.1080/19397030802513836
52.
Smith
L.
and
Ball
P.
, “
Steps towards Sustainable Manufacturing through Modelling Material, Energy and Waste Flows
,”
International Journal of Production Economics
140
, no. 
1
(November
2012
):
227
238
, https://doi.org/10.1016/j.ijpe.2012.01.036
53.
Wu
H.
, “
Business Model and Methods of Evaluation in Sustainable Manufacturing
,”
Manufacturing Review
8
(
2021
): 28, https://doi.org/10.1051/mfreview/2021026
54.
Luo
Y.
,
Ji
Z.
,
Leu
M. C.
, and
Caudill
R.
, “
Environmental Performance Analysis of Solid Freeform Fabrication Processes
,” in
Proceedings of the 1999 IEEE International Symposium on Electronics and the Environment
(
Piscataway, NJ
:
Institute of Electrical and Electronics Engineers
,
1999
),
1
6
, https://doi.org/10.1109/isee.1999.765837
55.
Khorram Niaki
M.
and
Nonino
F.
, “
Additive Manufacturing Management: A Review and Future Research Agenda
,”
International Journal of Production Research
55
, no. 
5
(
2017
):
1419
1439
, https://doi.org/10.1080/00207543.2016.1229064
56.
Yoon
H.-S.
,
Lee
J.-Y.
,
Kim
H.-S.
,
Kim
M.-S.
,
Kim
E.-S.
,
Shin
Y.-J.
,
Chu
W.-S.
, and
Ahn
S.-H.
, “
A Comparison of Energy Consumption in Bulk Forming, Subtractive, and Additive Processes: Review and Case Study
,”
International Journal of Precision Engineering and Manufacturing-Green Technology
1
, no. 
3
(July
2014
):
261
279
, https://doi.org/10.1007/s40684-014-0033-0
57.
Agrawal
R.
and
S
V.
, “
Sustainability Evaluation of Additive Manufacturing Processes Using Grey-Based Approach
,”
Grey Systems: Theory and Application
10
, no. 
4
(October
2020
):
393
412
, https://doi.org/10.1108/GS-08-2019-0028
58.
Joshi
D.
,
Modi
Y.
, and
Ravi
B.
, “
Evaluating Environmental Impacts of Sand Cast Products Using Life Cycle Assessment
,” in ICORD 11: Proceedings of the Third International Conference on Research into Design Engineering (Bangalore, India: Indian Institute of Science,
2011
),
551
558
.
59.
Olmez
G. M.
,
Dilek
F. B.
,
Karanfil
T.
, and
Yetis
U.
, “
The Environmental Impacts of Iron and Steel Industry: A Life Cycle Assessment Study
,”
Journal of Cleaner Production
130
(September
2016
):
195
201
, https://doi.org/10.1016/j.jclepro.2015.09.139
60.
Dalquist
S.
and
Gutowski
T.
, “
Life Cycle Analysis of Conventional Manufacturing Techniques: Sand Casting
,” in Proceedings of the ASME 2004 International Mechanical Engineering Congress and Exposition. Manufacturing Engineering and Materials Handling Engineering (
New York
:
American Society of Mechanical Engineers
,
2004
),
631
641
, https://doi.org/10.1115/IMECE2004-62599
61.
Yilmaz
O.
,
Anctil
A.
, and
Karanfil
T.
, “
LCA as a Decision Support Tool for Evaluation of Best Available Techniques (BATs) for Cleaner Production of Iron Casting
,”
Journal of Cleaner Production
105
(October
2015
):
337
347
, https://doi.org/10.1016/j.jclepro.2014.02.022
62.
van Sice
C.
and
Faludi
J.
, “
Comparing Environmental Impacts of Metal Additive Manufacturing to Conventional Manufacturing
,”
Proceedings of the Design Society
1
(August
2021
):
671
680
, https://doi.org/10.1017/pds.2021.67
63.
Pradhan
S. R.
,
Singh
R.
, and
Banwait
S. S.
, “
3D Printing Assisted Investment Casting of Dental Crowns for Recycling of DMLS Waste
,”
Arabian Journal for Science and Engineering
48
, no. 
3
(March
2023
):
3289
3299
, https://doi.org/10.1007/s13369-022-07155-z
64.
Prakash
C.
,
Singh
S.
,
Kopperi
H.
,
Ramakrihna
S.
, and
Mohan
S. V.
, “
Comparative Job Production Based Life Cycle Assessment of Conventional and Additive Manufacturing Assisted Investment Casting of Aluminium: A Case Study
,”
Journal of Cleaner Production
289
(March
2021
): 125164, https://doi.org/10.1016/j.jclepro.2020.125164
65.
Kellens
K.
,
Mertens
R.
,
Paraskevas
D.
,
Dewulf
W.
, and
Duflou
J. R.
, “
Environmental Impact of Additive Manufacturing Processes: Does AM Contribute to a More Sustainable Way of Part Manufacturing?
,”
Procedia CIRP
61
(
2017
):
582
587
, https://doi.org/10.1016/j.procir.2016.11.153
66.
Esmaeilian
B.
,
Behdad
S.
, and
Wang
B.
, “
The Evolution and Future of Manufacturing: A Review
,”
Journal of Manufacturing Systems
39
(April
2016
):
79
100
, https://doi.org/10.1016/j.jmsy.2016.03.001
67.
Torielli
R. M.
,
Abrahams
R. A.
,
Smillie
R. W.
, and
Voigt
R. C.
, “
Using Lean Methodologies for Economically and Environmentally Sustainable Foundries
,”
China Foundry
8
, no. 
1
(
2011
):
74
88
.
68.
Gullapalli
R. A.
, “
A Study of Mixed Manufacturing Methods in Sand Casting Using 3D Sand Printing and FDM Pattern-Making Based on Cost and Time
” (master’s thesis,
Youngstown State University
,
2016
).
69.
Sahebrao Ingole
D.
,
Madhusudan Kuthe
A.
,
Thakare
S. B.
, and
Talankar
A. S.
, “
Rapid Prototyping - A Technology Transfer Approach for Development of Rapid Tooling
,”
Rapid Prototyping Journal
15
, no. 
4
(
2009
):
280
290
, https://doi.org/10.1108/13552540910979794
70.
Brundtland
G.
and
Mansour
K.
,
Report of the World Commission on Environment and Development, Report of the World Commission on Environment and Development
(
New York
:
United Nations
,
1987
).
71.
Jawahir
I. S.
and
Dillon
O. W.
 Jr.
, “
Sustainable Manufacturing Processes: New Challenges for Developing Predictive Models and Optimization Techniques
” (paper presentation, Proceedings of the First International Conference on Sustainable Manufacturing, Montreal, Canada, October 18–19,
2007
).
72.
Bedi
P.
,
Singh
R.
, and
Ahuja
I. P. S.
, “
Multifactor Optimization of FDM Process Parameters for Development of Rapid Tooling Using SiC/Al2O3-Reinforced LDPE Filament
,”
Journal of Thermoplastic Composite Materials
33
, no. 
5
(May
2020
):
581
598
, https://doi.org/10.1177/0892705718808572
73.
Bagalkot
A.
,
Pons
D.
,
Symons
D.
, and
Clucas
D.
, “
Categorization of Failures in Polymer Rapid Tools Used for Injection Molding
,”
Processes
7
, no. 
1
(January
2019
): 17, https://doi.org/10.3390/pr7010017
74.
Kuo
C.-C.
and
Lin
J.-X.
, “
Development of an Injection Mold for Liquid Silicone Rubber Using Rapid Tooling Technology
,”
Smart Science
7
, no. 
3
(
2019
):
161
168
, https://doi.org/10.1080/23080477.2019.1596869
75.
Bagalkot
A.
,
Pons
D.
,
Clucas
D.
, and
Symons
D.
, “
A Methodology for Setting the Injection Moulding Process Parameters for Polymer Rapid Tooling Inserts
,”
Rapid Prototyping Journal
25
, no. 
9
(October
2019
):
1493
1505
, https://doi.org/10.1108/RPJ-10-2017-0217
76.
Kampker
A.
,
Triebs
J.
,
Alves
B.
,
Kawollek
S.
, and
Ayvaz
P.
, “
Potential Analysis of Additive Manufacturing Technologies for Fabrication of Polymer Tools for Injection Moulding – A Comparative Study
,” in
2018 IEEE International Conference on Advanced Manufacturing (ICAM)
(
Piscataway, NJ
:
Institute of Electrical and Electronics Engineers
,
2018
),
49
52
, https://doi.org/10.1109/AMCON.2018.8614915
77.
Kuo
C.-C.
,
Chen
W.-H.
,
Liu
X.-Z.
,
Liao
Y.-L.
,
Chen
W.-J.
,
Huang
B.-Y.
, and
Tsai
R.-L.
, “
Development of a Low-Cost Wax Injection Mold with High Cooling Efficiency
,”
The International Journal of Advanced Manufacturing Technology
93
, no. 
5
(November
2017
):
2081
2088
, https://doi.org/10.1007/s00170-017-0596-3
78.
Kang
J.
and
Ma
Q.
, “
The Role and Impact of 3D Printing Technologies in Casting
,”
China Foundry
14
, no. 
3
(May
2017
):
157
168
, https://doi.org/10.1007/s41230-017-6109-z
79.
Upadhyay
M.
,
Sivarupan
T.
, and
El Mansori
M.
, “
3D Printing for Rapid Sand Casting—A Review
,”
Journal of Manufacturing Processes
29
(October
2017
):
211
220
, https://doi.org/10.1016/j.jmapro.2017.07.017
80.
Rajaguru
J. C.
, “
Development of an Aluminium Filled Epoxy Insert Using Perfactory Rapid Prototyping Technique and Electroless Nickel Plating for Low Volume Plastic Injection Moulding
” (PhD diss.,
The University of Waikato
,
2015
).
81.
Almaghariz
E. S.
, “
Determining When to Use 3D Sand Printing: Quantifying the Role of Complexity
” (master’s thesis,
Youngstown State University,
2015
).
82.
Armillotta
A.
,
Baraggi
R.
, and
Fasoli
S.
, “
SLM Tooling for Die Casting with Conformal Cooling Channels
,”
The International Journal of Advanced Manufacturing Technology
71
, no. 
1
(March
2014
):
573
583
, https://doi.org/10.1007/s00170-013-5523-7
83.
Addanki
S. R.
,
Dharap
M. A.
, and
Venkatesh
J. V. L.
, “
Development of Rapid Tooling for Investment Casting Using Fused Deposition Modeling Process
,”
Advanced Materials Research
970
(
2014
):
155
165
, https://doi.org/10.4028/www.scientific.net/AMR.970.155
84.
Kuo
C. C.
, “
Development of Green Rapid Tooling Technologies
,”
Indian Journal of Engineering and Materials Sciences
20
, no. 
4
(August
2013
):
245
251
. https://doi.org/https://nopr.niscpr.res.in/handle/123456789/20958
85.
Vaezi
M.
,
Chianrabutra
S.
,
Mellor
B.
, and
Yang
S.
, “
Multiple Material Additive Manufacturing - Part 1: A Review
,”
Virtual and Physical Prototyping
8
, no. 
1
(
2013
):
19
50
, https://doi.org/10.1080/17452759.2013.778175
86.
Baumers
M.
, “
Economic Aspects of Additive Manufacturing: Benefits, Costs and Energy Consumption
” (PhD diss.,
Loughborough University,
2012)
87.
Hackney
P. M.
, “
An Investigation into the Characteristics of Materials and Processes, for the Production of Accurate Direct Parts and Tools Using 3D Rapid Prototyping Technologies
” (PhD diss.,
University Northumbria
,
2007
).
88.
Mukhtarkhanov
M.
,
Shehab
E.
, and
Ali
M. H.
, “
Process Parameter Optimization for 3D Printed Investment Casting Wax Pattern and Its Post-processing Technique
,”
Applied Sciences
12
, no. 
14
(July
2022
): 6847, https://doi.org/10.3390/app12146847
89.
Singh
R.
and
Gupta
M. K.
, “
Experimental Investigations for Modelling Hardness of Abs Replica Based Investment Castings
,”
Proceedings of the National Academy of Sciences, India Section A: Physical Sciences
89
, no. 
1
(March
2019
):
23
33
, https://doi.org/10.1007/s40010-017-0365-6
90.
Bruna
M.
,
Bolibruchová
D.
,
Pastirčák
R.
, and
Remišová
A.
, “
Gating System Design Optimization for Investment Casting Process
,”
Journal of Materials Engineering and Performance
28
, no. 
7
(July
2019
):
3887
3893
, https://doi.org/10.1007/s11665-019-03933-3
91.
Wang
D.
,
Dong
A.
,
Zhu
G.
,
Shu
D.
,
Sun
J.
,
Li
F.
, and
Sun
B.
, “
Rapid Casting of Complex Impeller Based on 3D Printing Wax Pattern and Simulation Optimization
,”
The International Journal of Advanced Manufacturing Technology
100
, no. 
9
(February
2019
):
2629
2635
, https://doi.org/10.1007/s00170-018-2736-9
92.
Tewo
R. K.
,
Rutto
H. L.
,
Focke
W.
,
Seodigeng
T.
, and
Koech
L. K.
, “
Formulations, Development and Characterization Techniques of Investment Casting Patterns
,”
Reviews in Chemical Engineering
35
, no. 
3
(March
2019
):
335
349
, https://doi.org/10.1515/revce-2017-0068
93.
Kuo
J.-K.
,
Huang
P.-H.
,
Lai
H.-Y.
, and
Chen
J.-R.
, “
Optimal Gating System Design for Investment Casting of 17-4PH Stainless Steel Enclosed Impeller by Numerical Simulation and Experimental Verification
,”
The International Journal of Advanced Manufacturing Technology
92
, no. 
1
(September
2017
):
1093
1103
, https://doi.org/10.1007/s00170-017-0198-0
94.
Roskosz
S.
,
Szeliga
D.
,
Cygan
R.
, and
Rokicki
P.
, “
Investment Casting Design and Processing for Drone’s Micro-Engine Turbine Rotor Manufacturing
,”
Solid State Phenomena
246
(February
2016
):
189
192
, https://doi.org/10.4028/www.scientific.net/SSP.246.189
95.
Altaf
K.
,
Rani
A. M. A.
,
Woldemichael
D. E.
,
Lemma
T. A.
,
Jian
C. Z.
, and
Fiqri
M. H.
, “
Application of Additive Manufacturing/3D Printing Technologies and Investment Casting for Prototype Development of Polycrystalline Diamond Compact (PDC) Drill Bit Body
,”
ARPN Journal of Engineering and Applied Sciences
11
, no. 
10
(May
2016
):
6514
6518
.
96.
Huang
P.-H.
and
Lin
C.-J.
, “
Computer-Aided Modeling and Experimental Verification of Optimal Gating System Design for Investment Casting of Precision Rotor
,”
The International Journal of Advanced Manufacturing Technology
79
, no. 
5
(July
2015
):
997
1006
, https://doi.org/10.1007/s00170-015-6897-5
97.
Singh
R.
and
Singh
S.
, “
Experimental Investigations for Statistically Controlled Solution of FDM Assisted Nylon6-Al-Al2O3replica Based Investment Casting
,”
Materials Today: Proceedings
2
, nos. 
4–5
(
2015
):
1876
1885
, https://doi.org/10.1016/j.matpr.2015.07.139
98.
Kumar
P.
,
Singh
R.
, and
Ahuja
I. P. S.
, “
Investigations for Mechanical Properties of Hybrid Investment Casting: A Case Study
,”
Materials Science Forum
808
(
2015
):
89
95
, https://doi.org/10.4028/www.scientific.net/MSF.808.89
99.
Pattnaik
S.
,
Jha
P. K.
, and
Karunakar
D. B.
, “
A Review of Rapid Prototyping Integrated Investment Casting Processes
,”
Proceedings of the Institution of Mechanical Engineers. Proceedings, Part L: Journal of Materials: Design and Applications
228
, no. 
4
(October
2014
):
249
277
, https://doi.org/10.1177/1464420713479257
100.
Vaezi
M.
,
Safaeian
D.
, and
Shakeri
M.
, “
Integration of Reverse Engineering and Rapid Technologies for Rapid Investment Casting of Gas Turbine Blades
,”
Virtual and Physical Prototyping
6
, no. 
4
(
2011
):
225
239
, https://doi.org/10.1080/17452759.2011.631173
101.
Deez
B. S.
, “
An Investigation on the Suitability of Layer Manufacturing Methods for Rapid Tooling Development in Investment Casting of Light Metal Alloys
” (master’s thesis,
Cape Peninsula University of Technology
,
2010
).
102.
Gallagher
A.
, “
A Decision Support System Methodology for the Selection of Rapid Prototyping Technologies for Investment-Cast Gas Turbine Parts
” (master’s thesis,
University of Central Florida,
2010
).
103.
Bassoli
E.
,
Gatto
A.
,
Iuliano
L.
, and
Grazia Violante
M.
, “
3D Printing Technique Applied to Rapid Casting
,”
Rapid Prototyping Journal
13
, no. 
3
(
2007
):
148
155
, https://doi.org/10.1108/13552540710750898
104.
Dotchev
K.
and
Soe
S.
, “
Rapid Manufacturing of Patterns for Investment Casting: Improvement of Quality and Success Rate
,”
Rapid Prototyping Journal
12
, no. 
3
(
2006
):
156
164
, https://doi.org/10.1108/13552540610670735
105.
Nagarajan
H. P. N.
,
“Enabling Design for Energy Efficient
Additive Manufacturing”
(master’s thesis,
Oregon State University
,
2017
).
106.
Nagarajan
H. P. N.
,
Malshe
H. A.
,
Haapala
K. R.
, and
Pan
Y.
, “
Environmental Performance Evaluation of a Fast Mask Image Projection Stereolithography Process through Time and Energy Modeling
,”
Journal of Manufacturing Science and Engineering
138
, no. 
10
(October
2016
): 101004, https://doi.org/10.1115/1.4033756
107.
Jackson
M. A.
,
Van Asten
A.
,
Morrow
J. D.
,
Min
S.
, and
Pfefferkorn
F. E.
, “
Energy Consumption Model for Additive-Subtractive Manufacturing Processes with Case Study
,”
International Journal of Precision Engineering and Manufacturing-Green Technology
5
, no. 
4
(August
2018
):
459
466
, https://doi.org/10.1007/s40684-018-0049-y
108.
da Silva Barros
K.
, “
Identification of the Environmental Impacts Contributors Related to the Use of Additive Manufacturing Technologies
” (PhD diss.,
University of Grenoble Alpes
,
2017
).
109.
Cerdas
F.
,
Juraschek
M.
,
Thiede
S.
, and
Herrmann
C.
, “
Life Cycle Assessment of 3D Printed Products in a Distributed Manufacturing System
,”
Journal of Industrial Ecology
21
, no. 
S1
(November
2017
):
S80
S93
, https://doi.org/10.1111/jiec.12618
110.
Baumers
M.
,
Duflou
J. R.
,
Flanagan
W.
,
Gutowski
T. G.
,
Kellens
K.
, and
Lifset
R.
, “
Charting the Environmental Dimensions of Additive Manufacturing and 3D Printing
,”
Journal of Industrial Ecology
21
, no. 
S1
(November
2017
):
S9
S14
, https://doi.org/10.1111/jiec.12668
111.
Huang
R.
,
Riddle
M. E.
,
Graziano
D.
,
Das
S.
,
Nimbalkar
S.
,
Cresko
J.
, and
Masanet
E.
, “
Environmental and Economic Implications of Distributed Additive Manufacturing: The Case of Injection Mold Tooling
,”
Journal of Industrial Ecology
21
, no. 
S1
(November
2017
):
S130
S143
, https://doi.org/10.1111/jiec.12641
112.
Bours
J.
,
Adzima
B.
,
Gladwin
S.
,
Cabral
J.
, and
Mau
S.
, “
Addressing Hazardous Implications of Additive Manufacturing: Complementing Life Cycle Assessment with a Framework for Evaluating Direct Human Health and Environmental Impacts
,”
Journal of Industrial Ecology
21
, no. 
S1
(November
2017
):
S25
S36
, https://doi.org/10.1111/jiec.12587
113.
Yang
Y.
,
Li
L.
,
Pan
Y.
, and
Sun
Z.
, “
Energy Consumption Modeling of Stereolithography-Based Additive Manufacturing Toward Environmental Sustainability
,”
Journal of Industrial Ecology
21
, no. 
S1
(November
2017
):
S168
S178
, https://doi.org/10.1111/jiec.12589
114.
Mendible
G. A.
,
Rulander
J. A.
, and
Johnston
S. P.
, “
Comparative Study of Rapid and Conventional Tooling for Plastics Injection Molding
,”
Rapid Prototyping Journal
23
, no. 
2
(
2017
):
344
352
, https://doi.org/10.1108/RPJ-01-2016-0013
115.
Kafara
M.
,
Süchting
M.
,
Kemnitzer
J.
,
Westermann
H.-H.
, and
Steinhilper
R.
, “
Comparative Life Cycle Assessment of Conventional and Additive Manufacturing in Mold Core Making for CFRP Production
,”
Procedia Manufacturing
8
(
2017
):
223
230
, https://doi.org/10.1016/j.promfg.2017.02.028
116.
Peng
S.
,
Li
T.
,
Wang
X.
,
Dong
M.
,
Liu
Z.
,
Shi
J.
, and
Zhang
H.
, “
Toward a Sustainable Impeller Production: Environmental Impact Comparison of Different Impeller Manufacturing Methods
,”
Journal of Industrial Ecology
21
, no. 
S1
(November
2017
):
S216
S229
, https://doi.org/10.1111/jiec.12628
117.
Walachowicz
F.
,
Bernsdorf
I.
,
Papenfuss
U.
,
Zeller
C.
,
Graichen
A.
,
Navrotsky
V.
,
Rajvanshi
N.
, and
Kiener
C.
, “
Comparative Energy, Resource and Recycling Lifecycle Analysis of the Industrial Repair Process of Gas Turbine Burners Using Conventional Machining and Additive Manufacturing
,”
Journal of Industrial Ecology
21
, no. 
S1
(November
2017
):
S203
S215
, https://doi.org/10.1111/jiec.12637
118.
Mami
F.
,
Revéret
J.-P.
,
Fallaha
S.
, and
Margni
M.
, “
Evaluating Eco-Efficiency of 3D Printing in the Aeronautic Industry
,”
Journal of Industrial Ecology
21
, no. 
S1
(November
2017
):
S37
S48
, https://doi.org/10.1111/jiec.12693
119.
Paris
H.
,
Mokhtarian
H.
,
Coatanéa
E.
,
Museau
M.
, and
Ituarte
I. F.
, “
Comparative Environmental Impacts of Additive and Subtractive Manufacturing Technologies
,”
CIRP Annals
65
, no. 
1
(
2016
):
29
32
, https://doi.org/10.1016/j.cirp.2016.04.036
120.
Priarone
P. C.
,
Ingarao
G.
,
di Lorenzo
R.
, and
Settineri
L.
, “
Influence of Material-Related Aspects of Additive and Subtractive Ti-6Al-4V Manufacturing on Energy Demand and Carbon Dioxide Emissions
,”
Journal of Industrial Ecology
21
, no. 
S1
(November
2017
):
S191
S202
, https://doi.org/10.1111/jiec.12523
121.
Faludi
J.
,
Bayley
C.
,
Bhogal
S.
, and
Iribarne
M.
, “
Comparing Environmental Impacts of Additive Manufacturing vs Traditional Machining via Life-Cycle Assessment
,”
Rapid Prototyping Journal
21
, no. 
1
(
2015
):
14
33
, https://doi.org/10.1108/RPJ-07-2013-0067
122.
Balogun
V. A.
,
Kirkwood
N.
, and
Mativenga
P. T.
, “
Energy Consumption and Carbon Footprint Analysis of Fused Deposition Modelling: A Case Study of RP Stratasys Dimension SST FDM
,”
International Journal of Scientific & Engineering Research
6
, no. 
8
(August
2015
):
442
447
.
123.
Kellens
K.
,
Renaldi
R.
,
Dewulf
W.
,
Kruth
J.-P.
, and
Duflou
J. R.
, “
Environmental Impact Modeling of Selective Laser Sintering Processes
,”
Rapid Prototyping Journal
20
, no. 
6
(
2014
):
459
470
, https://doi.org/10.1108/RPJ-02-2013-0018
124.
Kreiger
M.
and
Pearce
J. M.
, “
Environmental Life Cycle Analysis of Distributed Three-Dimensional Printing and Conventional Manufacturing of Polymer Products
,”
ACS Sustainable Chemistry & Engineering
1
, no. 
12
(December
2013
):
1511
1519
, https://doi.org/10.1021/sc400093k
125.
Clemon
L.
,
Sudradjat
A.
,
Jaquez
M.
,
Krishna
A.
,
Rammah
M.
, and
Dornfeld
D.
, “
Precision and Energy Usage for Additive Manufacturing
,” in
ASME 2013 International Mechanical Engineering Congress and Exposition, Volume 2A: Advanced Manufacturing
(
New York
:
American Society of Mechanical Engineers
,
2013
),
IMECE2013
-
65688
, https://doi.org/10.1115/IMECE2013-65688
126.
Le Bourhis
F.
,
Kerbrat
O.
,
Hascoet
J.-Y.
, and
Mognol
P.
, “
Sustainable Manufacturing: Evaluation and Modeling of Environmental Impacts in Additive Manufacturing
,”
The International Journal of Advanced Manufacturing Technology
69
, no. 
9
(December
2013
):
1927
1939
, https://doi.org/10.1007/s00170-013-5151-2
127.
Baumers
M.
,
Tuck
C.
,
Wildman
R.
,
Ashcroft
I.
,
Rosamond
E.
, and
Hague
R.
, “
Combined Build-Time, Energy Consumption and Cost Estimation for Direct Metal Laser Sintering
,” in
2012 International Solid Freeform Fabrication Symposium
(
Austin, TX
:
The University of Texas at Austin
,
2012
),
932
944
, https://doi.org/10.26153/tsw/15401
128.
Atzeni
E.
and
Salmi
A.
, “
Economics of Additive Manufacturing for End-Usable Metal Parts
,”
The International Journal of Advanced Manufacturing Technology
62
, no. 
9
(October
2012
):
1147
1155
, https://doi.org/10.1007/s00170-011-3878-1
129.
Telenko
C.
and
Conner Seepersad
C.
, “
A Comparison of the Energy Efficiency of Selective Laser Sintering and Injection Molding of Nylon Parts
,”
Rapid Prototyping Journal
18
, no. 
6
(
2012
):
472
481
, https://doi.org/10.1108/13552541211272018
130.
Kellens
K.
,
Yasa
E.
,
Renaldi
R.
,
Dewulf
W.
,
Kruth
J.-P.
,
Duflou
J. R.
,
Rodrigues
G. C.
,
Dewulf
W.
, and
Duflou
J. R.
, “
Energy and Resource Efficiency of SLS/SLM Processes (Keynote Paper)
” (paper presentation, 2011 International Solid Freeform Fabrication Symposium, Austin, TX, August 8–10,
2011
), https://doi.org/10.26153/tsw/15272
131.
Ilyas
I.
,
Taylor
C.
,
Dalgarno
K.
, and
Gosden
J.
, “
Design and Manufacture of Injection Mould Tool Inserts Produced Using Indirect SLS and Machining Processes
,”
Rapid Prototyping Journal
16
, no. 
6
(
2010
):
429
440
, https://doi.org/10.1108/13552541011083353
132.
Morrow
W. R.
,
Qi
H.
,
Kim
I.
,
Mazumder
J.
, and
Skerlos
S. J.
, “
Environmental Aspects of Laser-Based and Conventional Tool and Die Manufacturing
,”
Journal of Cleaner Production
15
, no. 
10
(
2007
):
932
943
, https://doi.org/10.1016/j.jclepro.2005.11.030
133.
Drizo
A.
and
Pegna
J.
, “
Environmental Impacts of Rapid Prototyping: An Overview of Research to Date
,”
Rapid Prototyping Journal
12
, no. 
2
(
2006
):
64
71
, https://doi.org/10.1108/13552540610652393
134.
Mognol
P.
,
Lepicart
D.
, and
Perry
N.
, “
Rapid Prototyping: Energy and Environment in the Spotlight
,”
Rapid Prototyping Journal
12
, no. 
1
(
2006
):
26
34
, https://doi.org/10.1108/13552540610637246
135.
Nagarajan
H. P. N.
and
Haapala
K. R.
, “
Characterizing the Influence of Resource-Energy-Exergy Factors on the Environmental Performance of Additive Manufacturing Systems
,”
Journal of Manufacturing Systems
48
, Part A (July
2018
):
87
96
, https://doi.org/10.1016/j.jmsy.2018.06.005
136.
Le Bourhis
F.
,
Kerbrat
O.
,
Hascoet
J.-Y.
, and
Mognol
P.
, “
Sustainable Manufacturing: Evaluation and Modeling of Environmental Impacts in Additive Manufacturing
,”
The International Journal of Advanced Manufacturing Technology
69
, no. 
9
(December
2013
):
1927
1939
, https://doi.org/10.1007/s00170-013-5151-2
137.
Baumers
M.
,
Tuck
C.
,
Wildman
R.
,
Ashcroft
I.
,
Rosamond
E.
, and
Hague
R.
, “
Transparency Built-In
,”
Journal of Industrial Ecology
17
, no. 
3
(June
2013
):
418
431
, https://doi.org/10.1111/j.1530-9290.2012.00512.x
This content is only available via PDF.
You do not currently have access to this content.