Abstract

Wind power capacity is rapidly expanding across the world. In many nations, however, wind energy profit margins are being reduced. As a result, many wind farm operators are looking for ways to save costs and reduce maintenance issues. This research provides a condition monitoring and predictive maintenance framework for wind turbines based on artificial intelligence. This paper aims to create a model that categorizes various blade defects using statistical attributes with acquired vibration signals. The fault classification uses machine learning approaches, including attribute extraction, selection, and classification. First, statistical characteristics or attributes are extracted from wind turbine quaver or vibration signals utilizing a data acquisition system, then feature selection is performed using a decision tree algorithm to choose the best attributes. Next, feature classification is performed with 15-fold cross-validations using different models of tree classifiers. Then, based on their accuracy percentage, the results of machine learning classifiers are compared to provide a good model of the turbine blade for the real-time monitoring system. The objective of this learning is to design a prototype that will work best for the fault classification of turbine blades with less computational time. The logistic model tree shows the best classification accuracy of 91.57 %, with 1.72 seconds of computation time.

References

1.
Elia
A.
,
Taylor
M.
,
Gallachóir
B. Ó.
, and
Rogan
F.
, “
Wind Turbine Cost Reduction: A Detailed Bottom-Up Analysis of Innovation Drivers
,”
Energy Policy
147
(December
2020
): 111912, https://doi.org/10.1016/j.enpol.2020.111912
2.
Singh
U.
,
Rizwan
M.
,
Malik
H.
, and
Márquez
F. P. G.
, “
Wind Energy Scenario, Success and Initiatives towards Renewable Energy in India—A Review
,”
Energies
15
, no. 
6
(March
2022
): 2291, https://doi.org/10.3390/EN15062291
3.
Ha
K.
,
Truong
H. V. A.
,
Dang
T. D.
, and
Ahn
K. K.
, “
Recent Control Technologies for Floating Offshore Wind Energy System: A Review
,”
International Journal of Precision Engineering and Manufacturing-Green Technology
8
, no. 
1
(January
2021
):
281
301
, https://doi.org/10.1007/S40684-020-00269-5
4.
Black
I. M.
,
Richmond
M.
, and
Kolios
A.
, “
Condition Monitoring Systems: A Systematic Literature Review on Machine-Learning Methods Improving Offshore-Wind Turbine Operational Management
,”
International Journal of Sustainable Energy
40
, no. 
10
(
2021
):
923
946
, https://doi.org/10.1080/14786451.2021.1890736
5.
Stetco
A.
,
Dinmohammadi
F.
,
Zhao
X.
,
Robu
V.
,
Flynn
D.
,
Barnes
M.
,
Keane
J.
, and
Nenadic
G.
, “
Machine Learning Methods for Wind Turbine Condition Monitoring: A Review
,”
Renewable Energy
133
(April
2019
):
620
635
, https://doi.org/10.1016/j.renene.2018.10.047
6.
Zhang
H.
,
Song
C.
,
Gao
J.
,
Diao
N.
, and
Sun
X.
, “
Image-Model-Based Fault Identification for Wind Turbines Using Feature Engineering and MuSnet
,”
IEEE Transactions on Industrial Informatics
18
, no. 
10
(October
2022
):
6592
6601
, https://doi.org/10.1109/TII.2022.3157748
7.
Wang
W.
,
Xue
Y.
,
He
C.
, and
Zhao
Y.
, “
Review of the Typical Damage and Damage-Detection Methods of Large Wind Turbine Blades
,”
Energies
15
, no. 
15
(August
2022
): 5672, https://doi.org/10.3390/EN15155672
8.
Gao
Z.
and
Liu
X.
, “
An Overview on Fault Diagnosis, Prognosis and Resilient Control for Wind Turbine Systems
,”
Processes
9
, no. 
2
(February
2021
): 300, https://doi.org/10.3390/PR9020300
9.
Li
D.
,
Ho
S.-C. M.
,
Song
G.
,
Ren
L.
, and
Li
H.
, “
A Review of Damage Detection Methods for Wind Turbine Blades
,”
Smart Materials and Structures
24
, no. 
3
(March
2015
): 033001, https://doi.org/10.1088/0964-1726/24/3/033001
10.
Kang
J.
,
Sobral
J.
, and
Soares
C. G.
, “
Review of Condition-Based Maintenance Strategies for Offshore Wind Energy
,”
Journal of Marine Science and Application
18
, no. 
1
(March
2019
):
1
16
, https://doi.org/10.1007/S11804-019-00080-Y
11.
Kang
J.
,
Wang
Z.
, and
Soares
C. G.
, “
Condition-Based Maintenance for Offshore Wind Turbines Based on Support Vector Machine
,”
Energies
13
, no. 
14
(July
2020
): 3518, https://doi.org/10.3390/EN13143518
12.
Regan
T.
,
Beale
C.
, and
Inalpolat
M.
, “
Wind Turbine Blade Damage Detection Using Supervised Machine Learning Algorithms
,”
Journal of Vibration and Acoustics
139
, no. 
6
(December
2017
): 061010, https://doi.org/10.1115/1.4036951
13.
Yang
C.
,
Liu
J.
,
Zeng
Y.
, and
Xie
G.
, “
Real-Time Condition Monitoring and Fault Detection of Components Based on Machine-Learning Reconstruction Model
,”
Renewable Energy
133
(April
2019
):
433
441
, https://doi.org/10.1016/j.renene.2018.10.062
14.
Tchakoua
P.
,
Wamkeue
R.
,
Ouhrouche
M.
,
Slaoui-Hasnaoui
F.
,
Tameghe
T. A.
, and
Ekemb
G.
, “
Wind Turbine Condition Monitoring: State-of-the-Art Review, New Trends, and Future Challenges
,”
Energies
7
, no. 
4
(April
2014
):
2595
2630
, https://doi.org/10.3390/EN7042595
15.
Wang
J.
,
Liang
Y.
,
Zheng
Y.
,
Gao
R. X.
, and
Zhang
F.
, “
An Integrated Fault Diagnosis and Prognosis Approach for Predictive Maintenance of Wind Turbine Bearing with Limited Samples
,”
Renewable Energy
145
(January
2020
):
642
650
, https://doi.org/10.1016/j.renene.2019.06.103
16.
Hsu
J.-Y.
,
Wang
Y.-F.
,
Lin
K.-C.
,
Chen
M.-Y.
, and
Hsu
J. H.-Y.
, “
Wind Turbine Fault Diagnosis and Predictive Maintenance through Statistical Process Control and Machine Learning
,”
IEEE Access
8
(
2020
):
23427
23439
, https://doi.org/10.1109/ACCESS.2020.2968615
17.
Sethi
M. R.
,
Sahoo
S.
,
Kanoongo
S.
, and
Hemasudheer
B.
, “
A Comparative Study on Diagnosing Wind Turbine Blade Fault Conditions Using Rule Classifier
,” in
2022 Second International Conference on Emerging Frontiers in Electrical and Electronic Technologies (ICEFEET)
(
Piscataway, NJ
:
Institute of Electrical and Electronics Engineers
,
2022
),
1
6
, https://doi.org/10.1109/ICEFEET51821.2022.9848401
18.
Zhou
H. F.
,
Dou
H. Y.
,
Qin
L. Z.
,
Chen
Y.
,
Ni
Y. Q.
, and
Ko
J. M.
, “
A Review of Full-Scale Structural Testing of Wind Turbine Blades
,”
Renewable and Sustainable Energy Reviews
33
(May
2014
):
177
187
, https://doi.org/10.1016/j.rser.2014.01.087
19.
Garolera
A. C.
,
Madsen
S. F.
,
Nissim
M.
,
Myers
J. D.
, and
Holboell
J.
, “
Lightning Damage to Wind Turbine Blades from Wind Farms in the U.S.
,”
IEEE Transactions on Power Delivery
31
, no. 
3
(June
2016
):
1043
1049
, https://doi.org/10.1109/TPWRD.2014.2370682
20.
Abouhnik
A.
and
Albarbar
A.
, “
Wind Turbine Blades Condition Assessment Based on Vibration Measurements and the Level of an Empirically Decomposed Feature
,”
Energy Conversion and Management
64
(December
2012
):
606
613
, https://doi.org/10.1016/j.enconman.2012.06.008
21.
Liu
Z.
,
Zhang
L.
, and
Carrasco
J.
, “
Vibration Analysis for Large-Scale Wind Turbine Blade Bearing Fault Detection with an Empirical Wavelet Thresholding Method
,”
Renewable Energy
146
(February
2020
):
99
110
, https://doi.org/10.1016/j.renene.2019.06.094
22.
Jaramillo
F.
,
Gutiérrez
J. M.
,
Orchard
M.
,
Guarini
M.
, and
Astroza
R.
, “
A Bayesian Approach for Fatigue Damage Diagnosis and Prognosis of Wind Turbine Blades
,”
Mechanical Systems and Signal Processing
174
(July
2022
): 109067, https://doi.org/10.1016/j.ymssp.2022.109067
23.
Cui
B.
,
Weng
Y.
, and
Zhang
N.
, “
A Feature Extraction and Machine Learning Framework for Bearing Fault Diagnosis
,”
Renewable Energy
191
(May
2022
):
987
997
, https://doi.org/10.1016/j.renene.2022.04.061
24.
Xu
D.
,
Liu
P. F.
, and
Chen
Z. P.
, “
Damage Mode Identification and Singular Signal Detection of Composite Wind Turbine Blade Using Acoustic Emission
,”
Composite Structures
255
(January
2021
): 112954, https://doi.org/10.1016/j.compstruct.2020.112954
25.
Selvaraj
Y.
and
Selvaraj
C.
, “
Proactive Maintenance of Small Wind Turbines Using IoT and Machine Learning Models
,”
International Journal of Green Energy
19
, no. 
5
(
2022
):
463
475
, https://doi.org/10.1080/15435075.2021.1930004
26.
Waqas Khan
P.
and
Byun
Y.-C.
, “
Multi-fault Detection and Classification of Wind Turbines Using Stacking Classifier
,”
Sensors
22
, no. 
18
(September
2022
): 6955, https://doi.org/10.3390/S22186955
27.
Vidal
Y.
and
Rodgers
M.
, “
Editorial: Wind Turbine Fault and Damage Diagnosis and Prognosis
,”
Frontiers in Energy Research
10
(
2022
): 1038271, https://doi.org/10.3389/fenrg.2022.1038271
28.
Zhu
J.
,
Wen
C.
, and
Liu
J.
, “
Defect Identification of Wind Turbine Blade Based on Multi-feature Fusion Residual Network and Transfer Learning
,”
Energy Science & Engineering
10
, no. 
1
(January
2022
):
219
229
, https://doi.org/10.1002/ese3.1024
29.
Zhang
W.
,
Vatn
J.
, and
Rasheed
A.
, “
A Review of Failure Prognostics for Predictive Maintenance of Offshore Wind Turbines
,”
Journal of Physics: Conference Series
2362
, no. 
1
(
2022
): 012043, https://doi.org/10.1088/1742-6596/2362/1/012043
30.
Pang
B.
,
Tian
T.
, and
Tang
G.-J.
, “
Fault State Recognition of Wind Turbine Gearbox Based on Generalized Multi-scale Dynamic Time Warping
,”
Structural Health Monitoring
20
, no. 
6
(November
2021
):
3007
3023
, https://doi.org/10.1177/1475921720978622
31.
Pandit
R.
,
Astolfi
D.
,
Hong
J.
,
Infield
D.
, and
Santos
M.
, “
SCADA Data for Wind Turbine Data-Driven Condition/Performance Monitoring: A Review on State-of-Art, Challenges and Future Trends
,”
Wind Engineering
47
, no. 
2
(April
2023
):
422
441
, https://doi.org/10.1177/0309524X221124031
32.
Ilyas
H.
,
Ali
S.
,
Ponum
M.
,
Hasan
O.
,
Mahmood
M. T.
,
Iftikhar
M.
, and
Malik
M. H.
, “
Chronic Kidney Disease Diagnosis Using Decision Tree Algorithms
,”
BMC Nephrology
22
, no. 
1
(August
2021
): 273, https://doi.org/10.1186/s12882-021-02474-z
33.
Manju
B. R.
,
Joshuva
A.
, and
Sugumaran
V.
, “
A Data Mining Study for Condition Monitoring on Wind Turbine Blades Using Hoeffding Tree Algorithm through Statistical and Histogram Features
,”
International Journal of Mechanical Engineering and Technology
9
, no. 
1
(January
2018
):
1061
1079
.
34.
Clocker
K.
,
Hu
C.
,
Roadman
J.
,
Albertani
R.
, and
Johnston
M. L.
, “
Autonomous Sensor System for Wind Turbine Blade Collision Detection
,”
IEEE Sensors Journal
22
, no. 
12
(June
2022
):
11382
11392
, https://doi.org/10.1109/JSEN.2021.3081533
35.
Konis
P.
,
Tcherniak
D.
, and
Fassois
S. D.
, “
Random Vibration Based Robust Damage Detection on an Operating Wind Turbine Blade Under Variable Natural Excitation Conditions
,” in
ASME 2022 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
(
Reston, VA
:
American Society for Civil Engineers
,
2022
), https://doi.org/10.1115/SMASIS2022-90936
36.
Barszcz
T.
, “
Application of Diagnostic Algorithms for Wind Turbines
,”
Diagnostyka
2
, no. 
50
(
2009
):
7
11
.
37.
Peng
Y.
,
Wang
W.
,
Tang
Z.
,
Cao
G.
, and
Zhou
S.
, “
Non-uniform Illumination Image Enhancement for Surface Damage Detection of Wind Turbine Blades
,”
Mechanical Systems and Signal Processing
170
(May
2022
): 108797, https://doi.org/10.1016/j.ymssp.2021.108797
This content is only available via PDF.
You do not currently have access to this content.