Abstract

Natural fiber–reinforced polymer (NFRP) composites are increasingly considered in the industry for creating environmentally benign product alternatives. The complex structure of the fibers and their random distribution within the matrix basis impede the machinability of NFRP composites as well as the resulting product quality. This article investigates a smart process monitoring approach that employs acoustic emission (AE)—elastic waves sourced from various plastic deformation and fracture mechanisms—to characterize the variations in the NFRP machining process. The state-of-the-art analytic tools are incapable of handling the transient dynamic patterns with long-term correlations and bursts in AE and how process conditions and the underlying material removal mechanisms affect these patterns. To address this gap, we investigated two types of the bidirectional gated recurrent deep learning neural network (BD-GRNN) models, viz., bidirectional long short-term memory and bidirectional gated recurrent unit to predict the process conditions based on dynamic AE patterns. The models are tested on the AE signals gathered from orthogonal cutting experiments on NFRP samples performed at six different cutting speeds and three fiber orientations. The results from the experimental study suggest that BD-GRNNs can correctly predict (around 87 % accuracy) the cutting conditions based on the extracted temporal-spectral features of AE signals.

References

1.
Peças
P.
,
Carvalho
H.
,
Salman
H.
, and
Leite
M.
, “
Natural Fibre Composites and Their Applications: A Review
,”
Journal of Composites Science
2
, no. 
4
(November
2018
): 66, https://doi.org/10.3390/jcs2040066
2.
Uddin
N.
, ed.,
Developments in Fiber-Reinforced Polymer (FRP) Composites for Civil Engineering
(
Cambridge, UK
:
Woodhead Publishing
,
2013
).
3.
Hollaway
L. C.
and
Head
P. R.
, “
Composite Materials and Structures in Civil Engineering
,” in
Comprehensive Composite Materials
(
Amsterdam, the Netherlands
:
Elsevier
,
2000
),
489
527
.
4.
George
J.
,
Sreekala
M. S.
, and
Thomas
S.
, “
A Review on Interface Modification and Characterization of Natural Fiber Reinforced Plastic Composites
,”
Polymer Engineering and Science
41
, no. 
9
(
2001
):
1471
1485
, https://doi.org/10.1002/pen.10846
5.
Valadez-Gonzalez
A.
,
Cervantes-Uc
J. M.
,
Olayo
R.
, and
Herrera-Franco
P. J.
, “
Effect of Fiber Surface Treatment on the Fiber–Matrix Bond Strength of Natural Fiber Reinforced Composites
,”
Composites Part B: Engineering
30
, no. 
3
(April
1999
):
309
320
, https://doi.org/10.1016/S1359-8368(98)00054-7
6.
Lee
D.-E.
,
Hwang
I.
,
Valente
C. M.
,
Oliveira
J. F. G.
, and
Dornfeld
D. A.
, “
Precision Manufacturing Process Monitoring with Acoustic Emission
,”
International Journal of Machine Tools and Manufacture
46
, no. 
2
(February
2006
):
176
188
, https://doi.org/10.1016/j.ijmachtools.2005.04.001
7.
Dornfeld
D. A.
and
Kannatey-Asibu
E.
, “
Acoustic Emission During Orthogonal Metal Cutting
,”
International Journal of Mechanical Sciences
22
, no. 
5
(
1980
):
285
296
, https://doi.org/10.1016/0020-7403(80)90029-6
8.
Barry
J.
,
Byrne
G.
, and
Lennon
D.
, “
Observations on Chip Formation and Acoustic Emission in Machining Ti–6Al–4V Alloy
,”
International Journal of Machine Tools and Manufacture
41
, no. 
7
(May
2001
):
1055
1070
, https://doi.org/10.1016/S0890-6955(00)00096-1
9.
Bukkapatnam
S. T. S.
,
Kumara
S. R. T.
, and
Lakhtakia
A.
, “
Analysis of Acoustic Emission Signals in Machining
,”
Journal of Manufacturing Science and Engineering
121
, no. 
4
(November
1999
):
568
576
, https://doi.org/10.1115/1.2833058
10.
Kelly
A.
and
Zweben
C.
, eds.,
Comprehensive Composite Materials
(
Oxford, UK
:
Pergamon
,
2000
).
11.
Wang
Z.
,
Bukkappatnam
S. T. S.
,
Kumara
S. R. T.
,
Kong
Z.
, and
Katz
Z.
, “
Change Detection in Precision Manufacturing Processes Under Transient Conditions
,”
CIRP Annals
63
, no. 
1
(
2014
):
449
452
, https://doi.org/10.1016/j.cirp.2014.03.123
12.
Chang
D.-C.
and
Bukkapatnam
S.
, “
Towards Characterizing the Microdynamics of AE Generation in Machining
,”
Machining Science and Technology
8
, no. 
2
(
2004
):
235
261
, https://doi.org/10.1081/MST-200028743
13.
Bukkapatnam
S.
and
Chang
D.-C.
, “
A Statistical Mechanistic Model of Acoustic Emission Generation in Shear Zone of Machining
,”
Transactions of NAMRI/SME
33
(
2005
):
597
604
.
14.
Csikor
F. F.
,
Motz
C.
,
Weygand
D.
,
Zaiser
M.
, and
Zapperi
S.
, “
Dislocation Avalanches, Strain Bursts, and the Problem of Plastic Forming at the Micrometer Scale
,”
Science
318
, no. 
5848
(October
2007
):
251
254
, https://doi.org/10.1126/science.1143719
15.
Hinton
G.
,
Deng
L.
,
Yu
D.
,
Dahl
G. E.
,
Mohamed
A.-R.
,
Jaitly
N.
,
Senior
A.
, et al., “
Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups
,”
IEEE Signal Processing Magazine
29
, no. 
6
(November
2012
):
82
97
, https://doi.org/10.1109/MSP.2012.2205597
16.
Trianto
R.
,
Tai
T.-C.
, and
Wang
J.-C.
, “
Fast-LSTM Acoustic Model for Distant Speech Recognition
,” in
2018 IEEE International Conference on Consumer Electronics (ICCE)
(
Piscataway, NJ
:
Institute of Electrical and Electronics Engineers
,
2018
),
1
4
.
17.
Kamarthi
S. V.
,
Kumara
S. R. T.
, and
Cohen
P. H.
, “
Wavelet Representation of Acoustic Emission in Turning Process
,” in
Proceedings of the 1995 Artificial Neural Networks in Engineering, ANNIE’95
(
Fairfield, NJ
:
ASME
,
1995
),
861
866
.
18.
Pittner
S.
,
Kamarthi
S. V.
, and
Gao
Q.
, “
Wavelet Networks for Sensor Signal Classification in Flank Wear Assessment
,”
Journal of Intelligent Manufacturing
9
(August
1998
):
315
322
, https://doi.org/10.1023/A:1008970608121
19.
Pittner
S.
and
Kamarthi
S. V.
, “
Feature Extraction from Wavelet Coefficients for Pattern Recognition Tasks
,”
IEEE Transactions on Pattern Analysis and Machine Intelligence
21
, no. 
1
(January
1999
):
83
88
, https://doi.org/10.1109/34.745739
20.
Mikolov
T.
,
Kombrink
S.
,
Burget
L.
,
Černocký
J.
, and
Khudanpur
S.
, “
Extensions of Recurrent Neural Network Language Model
,” in
2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
(
Piscataway, NJ
:
Institute of Electrical and Electronics Engineers
,
2011
),
5528
5531
.
21.
Sak
H.
,
Senior
A.
, and
Beaufays
F.
, “
Long Short-Term Memory Recurrent Neural Network Architectures for Large Scale Acoustic Modeling
” (paper presentation, 15th Annual Conference of the International Speech Communication Association - INTERSPEECH 2014, Singapore, September 14–18,
2014
).
22.
Graves
A.
,
Mohamed
A.-R.
, and
Hinton
G.
, “
Speech Recognition with Deep Recurrent Neural Networks
,” in
2013 IEEE International Conference on Acoustics, Speech and Signal Processing
(
Piscataway, NJ
:
Institute of Electrical and Electronics Engineers
,
2013
),
6645
6649
.
23.
Bukkapatnam
S. T. S.
,
Kumara
S. R. T.
, and
Lakhtakia
A.
, “
Fractal Estimation of Flank Wear in Turning
,”
Journal of Dynamic Systems, Measurement, and Control
122
, no. 
1
(March
2000
):
89
94
, https://doi.org/10.1115/1.482446
24.
Rao
P.
,
Bukkapatnam
S.
,
Beyca
O.
,
Kong
Z. J.
, and
Komanduri
R.
, “
Real-Time Identification of Incipient Surface Morphology Variations in Ultraprecision Machining Process
,”
Journal of Manufacturing Science and Engineering
136
, no. 
2
(April
2014
): 021008, https://doi.org/10.1115/1.4026210
25.
Cheng
C.
,
Wang
Z.
,
Hung
W.
,
Bukkapatnam
S. T. S.
, and
Komanduri
R.
, “
Ultra-Precision Machining Process Dynamics and Surface Quality Monitoring
,”
Procedia Manufacturing
1
(
2015
):
607
618
, https://doi.org/10.1016/j.promfg.2015.09.044
26.
Kannatey-Asibu
E.
 Jr.
and
Dornfeld
D. A.
, “
A Study of Tool Wear Using Statistical Analysis of Metal-Cutting Acoustic Emission
,”
Wear
76
, no. 
2
(February
1982
):
247
261
, https://doi.org/10.1016/0043-1648(82)90009-6
27.
Kannatey-Asibu
E.
 Jr.
and
Dornfeld
D. A.
, “
Quantitative Relationships for Acoustic Emission from Orthogonal Metal Cutting
,”
Journal of Engineering for Industry
103
, no. 
3
(August
1981
):
330
340
, https://doi.org/10.1115/1.3184493
28.
Wang
Z.
and
Bukkapatnam
S. T. S.
, “
A Dirichlet Process Gaussian State Machine Model for Change Detection in Transient Processes
,”
Technometrics
60
, no. 
3
(May
2018
):
373
385
, https://doi.org/10.1080/00401706.2017.1371079
29.
Chung
J.
,
Gulcehre
C.
,
Cho
K.
, and
Bengio
Y.
, “
Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling
,”
arXiv preprint arXiv:1412.3555
,
2014
, http://web.archive.org/web/20200306190043/https://arxiv.org/abs/1412.3555
30.
Hase
A.
,
Wada
M.
,
Koga
T.
, and
Mishina
H.
, “
The Relationship between Acoustic Emission Signals and Cutting Phenomena in Turning Process
,”
The International Journal of Advanced Manufacturing Technology
70
, no. 
5
(February
2014
):
947
955
, https://doi.org/10.1007/s00170-013-5335-9
31.
François
C.
, “
Keras: The Python Deep Learning Library
,” Keras, http://web.archive.org/20200117052317/https://keras.io/
32.
Um
T. T.
,
Pfister
F. M. J.
,
Pichler
D.
,
Endo
S.
,
Lang
M.
,
Hirche
S.
,
Fietzek
U.
, and
Kulić
D.
, “
Data Augmentation of Wearable Sensor Data for Parkinson’s Disease Monitoring Using Convolutional Neural Networks
,”
arXiv preprint arXiv:1706.00527
,
2017
, http://web.archive.org/web/20200306191019/https://arxiv.org/abs/1706.00527
33.
Wang
Z.
,
Chegdani
F.
,
Yalamarti
N.
,
Takabi
B.
,
Tai
B.
,
Mansori
M. E.
, and
Bukkapatnam
S. T. S.
, “
Acoustic Emission (AE) Characterization of Natural Fiber Reinforced Plastic (NFRP) Composite Machining Using a Random Forest Machine Learning Model
,”
Journal of Manufacturing Science and Engineering
142
, no. 
3
(January
2020
): 031003, https://doi.org/10.1115/1.4045945
34.
Stathakis
D.
, “
How Many Hidden Layers and Nodes?
,”
International Journal of Remote Sensing
30
, no. 
8
(April
2009
):
2133
2147
, https://doi.org/10.1080/01431160802549278
35.
Keskar
N. S.
,
Mudigere
D.
,
Nocedal
J.
,
Smelyanskiy
M.
, and
Tang
P. T. P.
, “
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima
,”
arXiv preprint arXiv:1609.04836
,
2016
, http://web.archive.org/web/20200306191156/https://arxiv.org/abs/1609.04836
36.
Hochreiter
S.
and
Schmidhuber
J.
, “
Long Short-Term Memory
,”
Neural Computation
9
, no. 
8
(
1997
):
1735
1780
, https://doi.org/10.1162/neco.1997.9.8.1735
This content is only available via PDF.
You do not currently have access to this content.