Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
NARROW
Format
Article Type
Conference Series
Subject Area
Topics
Date
Availability
1-2 of 2
Travis M. Hery
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
Proc. ASME. SMASIS2017, Volume 1: Development and Characterization of Multifunctional Materials; Mechanics and Behavior of Active Materials; Bioinspired Smart Materials and Systems; Energy Harvesting; Emerging Technologies, V001T08A014, September 18–20, 2017
Paper No: SMASIS2017-3928
Abstract
In this article, it is proposed that a membrane with tunable ionic conductivity can be used as a separator between the electrodes of a supercapacitor to both allow normal charge/discharge operation and minimize self-discharge when not in use. It is shown that the redox active conducting polymer PPy(DBS), when polymerized on a porous substrate, will span across the pores of the membrane. PPy(DBS) is also shown to function as an ionic redox transistor, in which the transmembrane ionic conductivity of the polymer membrane is a function of its redox state. The PPy(DBS) ionic redox transistor is applied between the electrodes in a supercapacitor as a smart membrane separator. It is demonstrated that the maximum tunable ionic conductivity of the smart membrane separator is comparable in operation to an industry standard separator at maximum ionic conductivity, with a self-discharge leakage current of ∼0.12mA/cm 2 at 1V. The minimum tunable ionic conductivity of the smart membrane separator is shown to decrease the supercapacitor self-discharge when not in use by a factor of 10, with a leakage current of 0.012mA/cm 2 at 1V. This range of tunable ionic conductivity could lead to the emergence of redox transistor batteries with high energy density and low self-discharge for short and long-term storage applications.
Proceedings Papers
Proc. ASME. SMASIS2016, Volume 2: Modeling, Simulation and Control; Bio-Inspired Smart Materials and Systems; Energy Harvesting, V002T06A015, September 28–30, 2016
Paper No: SMASIS2016-9193
Abstract
The transport of monovalent cations across a suspended PPy(DBS) polymer membrane in an aqueous solution as a function of its redox state is investigated. Maximum ion transport is found to occur when PPy(DBS) is in the reduced state, and minimum transport in the oxidized state. No deviation in the dynamics of ion transport based on the direction of the applied electrical field is observed. Additionally, it is found that ion transport rates linearly increased proportional to the state of reduction until a steady state is reached when the polymer is fully reduced. Therefore controlled, bidirectional ion transport is for the first time demonstrated. The effect of aqueous Li + concentration on ion transport in the fully reduced state of the polymer is studied. It is found that ion transport concentration dependence follows Michaelis-Menten kinetics (which models protein reaction rates, such as those forming ion channels in a cell membrane) with an r 2 value of 0.99. For the given PPy(DBS) polymer charge density and applied potential across the membrane, the maximum possible ion transport rate per channel is found to be 738 ions per second and the Michaelis constant, representing the concentration at which half the maximum ion transport rate occurs, is 619.5mM.