Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
NARROW
Format
Journal
Article Type
Conference Series
Subject Area
Topics
Date
Availability
1-2 of 2
Sheng Yan
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Journal:
Journal of Heat Transfer
Article Type: Research-Article
J. Heat Transfer. May 2017, 139(5): 052404.
Paper No: HT-16-1162
Published Online: February 23, 2017
Abstract
Plasma is a host of numerous analytes such as proteins, metabolites, circulating nucleic acids (CNAs), and pathogens, and it contains massive information about the functioning of the whole body, which is of great importance for the clinical diagnosis. Plasma needs to be completely cell-free for effective detection of these analytes. The key process of plasma extraction is to eliminate the contamination from blood cells. Centrifugation, a golden standard method for blood separation, is generally lab-intensive, time consuming, and even dangerous to some extent, and needs to be operated by well-trained staffs. Membrane filtration can filter cells very effectively according to its pore size, but it is prone to clogging by dense particle concentration and suffers from limited capacity of filtration. Frequent rinse is lab-intensive and undesirable. In this work, we proposed and fabricated an integrated microfluidic device that combined particle inertial focusing and membrane filter for high efficient blood plasma separation. The integrated microfluidic device was evaluated by the diluted (×1/10, ×1/20) whole blood, and the quality of the extracted blood plasma was measured and compared with that from the standard centrifugation. We found that the quality of the extracted blood plasma from the proposed device can be equivalent to that from the standard centrifugation. This study demonstrates a significant progress toward the practical application of inertial microfluidics with membrane filter for high-throughput and highly efficient blood plasma extraction.
Proceedings Papers
Proc. ASME. MNHMT2016, Volume 1: Micro/Nanofluidics and Lab-on-a-Chip; Nanofluids; Micro/Nanoscale Interfacial Transport Phenomena; Micro/Nanoscale Boiling and Condensation Heat Transfer; Micro/Nanoscale Thermal Radiation; Micro/Nanoscale Energy Devices and Systems, V001T01A012, January 4–6, 2016
Paper No: MNHMT2016-6717
Abstract
Plasma is a host of various analytes such as proteins, metabolites, circulating nucleic acids (CNAs), pathogens. The key process of plasma extraction is to eliminate the contamination from blood cells. Conventional methods, such as centrifugation and membrane filtration, are generally lab-intensive, time consuming and even dangerous. In this study, we report an integrated microfluidic device that combines inertial microfluidics and membrane filter. The integrated microfluidic device was evaluated by the diluted (x1/10, x1/20) whole blood, and the quality of the extracted blood plasma was tested. It was found that quality of extracted blood plasma from integrated device was equivalent to that obtained by the centrifugation. This study demonstrates a significant progress towards the practical application of inertial microfluidics with membrane filter for high-throughput and high efficient blood plasma extraction.