Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
NARROW
Format
Journal
Article Type
Conference Series
Subject Area
Topics
Date
Availability
1-3 of 3
Sergiy V. Yepifanov
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Article Type: Research-Article
J. Eng. Gas Turbines Power. March 2015, 137(3): 031506.
Paper No: GTP-14-1419
Published Online: October 7, 2014
Abstract
A modern gas turbine engine (GTE) is a complex nonlinear dynamic system with the mutual effect of gas-dynamic and thermal processes in its components. The engine development requires the precise real-time simulation of all main operating modes. One of the most complex operating modes for modeling is “cold stabilization,” which is the rotors acceleration without completely heated up the turbine elements. The dynamic heating problem is a topical practical issue. Solving the problem requires coordinating a gas-path model with heat and stress models, which is also a significant scientific problem. The phenomenon of interest is the radial clearances change during engines operation and its influence on engines static and dynamic performances. To consider the clearance change, it is necessary to synthesize the quick proceeding stress-state models (QPSSM) of a rotor and a casing for the initial temperature and dynamic heating. The unique feature of the QPSSM of GTEs is separate equation sets, which allow the heat exchange between structure elements and the gas (air) and the displacements of the turbine rotor and the casing. This ability appears as a result of determining the effect of each factor on different structural elements of the engine. The presented method significantly simplifies the model identification, which can be performed based on a precise calculation of the unsteady temperature fields of the structural elements and the variation of the radial clearance. Thus, the present paper addresses a new method to model the engine dynamics considering its heating up. The method is based on the integration of three models: the gas-path dynamics model, the clearance dynamics model, and the model of the clearance effect on the efficiency. The paper also comprises the program implementation of the models. The method was tested by applying to a particular turbofan engine.
Proceedings Papers
Alternative Method to Simulate a Sub-Idle Engine Operation in Order to Synthesize Its Control System
Proc. ASME. GT2014, Volume 6: Ceramics; Controls, Diagnostics and Instrumentation; Education; Manufacturing Materials and Metallurgy, V006T06A010, June 16–20, 2014
Paper No: GT2014-25960
Abstract
The steady-state and transient engine performances of gas turbine control system development are usually evaluated by applying full thermodynamic engine models. Most models only address the operating range between the idle and maximum power points, but more recently, they also address a sub-idle operating range. The lack of information about the component maps at the sub-idle modes creates major challenges for the starting system and control system designers. A common method to cope with the problem extrapolates the performances of the engine components to the sub-idle operation range. Precise extrapolation is a challenge to be studied by many scientists. As a rule, many scientists are only concerned about particular aspects of the problem such as the lighting combustion chamber or the turbine operation under the turned-off conditions of the combustion chamber. However, there are no known reports about a model that considers all of these mentioned aspects and simulates the engine starting. To synthesize a thermodynamic model of starting, most known methods require the performance of the components in the sub-idle range. The proposed paper addresses a new method that simulates the engine starting. The method substitutes the non-linear thermodynamic model with a linear dynamic model, which is supplemented with a simplified static model. The latter model is the set of direct relations between parameters that are used in the control algorithms instead of commonly used component performances. Specifically, the static model consists of simplified relations between the gas path parameters and the corrected rotational speed. The paper also describes an algorithm for model synthesis and its practical application to real data.
Proceedings Papers
Proc. ASME. GT2014, Volume 6: Ceramics; Controls, Diagnostics and Instrumentation; Education; Manufacturing Materials and Metallurgy, V006T06A017, June 16–20, 2014
Paper No: GT2014-26258
Abstract
A modern gas turbine engine (GTE) is a complex non-linear dynamic system with the mutual effect of gas-dynamic and thermal processes in its components. The engine development requires the precise real-time simulation of all main operating modes. One of the most complex operating modes for modeling is “cold stabilization”, which is the rotors acceleration without completely heated up the turbine elements. The dynamic heating problem is a topical practical issue. Solving the problem requires coordinating a gas-path model with heat and stress models, which is also a significant scientific problem. The phenomenon of interest is the radial clearances change during engines operation and its influence on engines static and dynamic performances. To consider the clearance change, it is necessary to synthesize the quick proceeding stress-state models (QPSSM) of a rotor and a casing for the initial temperature and dynamic heating. The unique feature of the QPSSM of GTEs is separate equation sets, which allow the heat exchange between structure elements and the gas (air) and the displacements of the turbine rotor and the casing. This ability appears as a result of determining the effect of each factor on different structural elements of the engine. The presented method significantly simplifies the model identification, which can be performed based on a precise calculation of the unsteady temperature fields of the structural elements and the variation of the radial clearance. Thus, the present paper addresses a new method to model the engine dynamics considering its heating up. The method is based on the integration of three models: the gas-path dynamics model, the clearance dynamics model and the model of the clearance effect on the efficiency. The paper also comprises the program implementation of the models. The method was tested by applying to a particular turbofan engine.