Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
NARROW
Format
Journal
Article Type
Conference Series
Subject Area
Topics
Date
Availability
1-16 of 16
Seok-Ki Choi
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
Proc. ASME. ICONE22, Volume 4: Radiation Protection and Nuclear Technology Applications; Fuel Cycle, Radioactive Waste Management and Decommissioning; Computational Fluid Dynamics (CFD) and Coupled Codes; Reactor Physics and Transport Theory, V004T10A027, July 7–11, 2014
Paper No: ICONE22-30666
Abstract
A computational study of a thermal striping in the upper plenum of the PGSFR (Prototype Generation-IV Sodium-cooled Fast Reactor) being developed at KAERI (Korea Atomic Energy Research Institute) is presented. First, previous experimental and numerical studies on the thermal striping are briefly discussed. Both RANS (Reynolds-Averaged Navier-Stokes) and LES (Large Eddy Simulation) approaches are employed for the simulation of thermal striping in the upper plenum of the PGSFR. For the RANS approach, the conventional k – ε turbulence model is employed and the LES is performed using the WALE (Wall-Adapting Local Eddy-viscosity) model. More than 11.8 million unstructured elements are generated in the upper plenum region of the PGSFR using the ICEM commercial code. From the RANS results, the time-averaged velocity components and temperature field in the complicated upper plenum of PGSFR are calculated. In the LES results, the time history of temperature fluctuation at the several locations of solid walls of UIS (Upper Internal Structure) and IHX (Intermediate Heat Exchanger) are additionally stored. Comparisons of the predicted time-averaged velocity components and temperature between the two methods are also presented. From the temporal variation of temperature at the solid walls, one can find the locations where the thermal stress is large and assess whether the solid structures can endure the thermal stress during the reactor life time.
Proceedings Papers
Proc. ASME. PVP2013, Volume 4: Fluid-Structure Interaction, V004T04A075, July 14–18, 2013
Paper No: PVP2013-97833
Abstract
A numerical analysis of the thermal stratification in the upper plenum of the MONJU fast breeder reactor was performed. Calculations were performed for a 1/6 simplified model of the MONJU reactor using the commercial code, CFX-13. To better resolve the geometrically complex upper core structure of the MONJU reactor, the porous media approach was adopted for the simulation. First, a steady state solution was obtained, and the transient solutions were then obtained for the turbine trip test conducted in December 1995. The time dependent inlet conditions for the mass flow rate and temperature were provided by JAEA. Good agreement with the experimental data was observed for the steady state solution. The numerical solution of the transient analysis shows the formation of thermal stratification within the upper plenum of the reactor vessel during the turbine trip test. The temporal variations of temperature were predicted accurately by the present method in the initial rapid coastdown period (∼300 seconds). However, the transient numerical solutions show a faster thermal mixing than that observed in the experiment after the initial coastdown period. A near homogenization of the temperature field in the upper plenum is predicted after about 900 seconds, which is a much shorter-term thermal stratification than the experimental data indicates.
Journal Articles
Journal:
Journal of Heat Transfer
Article Type: Research Papers
J. Heat Transfer. May 2010, 132(5): 051801.
Published Online: March 4, 2010
Abstract
A numerical study for the evaluation of heat transfer correlations for sodium flows in a heat exchanger of a fast breeder nuclear reactor is performed. Three different types of flows such as parallel flow, cross flow, and two inclined flows are considered. Calculations are performed for these three typical flows in a heat exchanger changing turbulence models. The tested turbulence models are the shear stress transport (SST) model and the SSG-Reynolds stress turbulence model by Speziale, Sarkar, and Gaski (1991, “Modelling the Pressure-Strain Correlation of Turbulence: An Invariant Dynamical System Approach,” J. Fluid Mech., 227, pp. 245–272) . The computational model for parallel flow is a flow past tubes inside a circular cylinder and those for the cross flow and inclined flows are flows past the perpendicular and inclined tube banks enclosed by a rectangular duct. The computational results show that the SST model produces the most reliable results that can distinguish the best heat transfer correlation from other correlations for the three different flows. It was also shown that the SSG-RSTM high-Reynolds number turbulence model does not deal with the low-Prandtl number effect properly when the Peclet number is small. According to the present calculations for a parallel flow, all the old correlations do not match with the present numerical solutions and a new correlation is proposed. The correlations by Dwyer (1966, “Recent Developments in Liquid-Metal Heat Transfer,” At. Energy Rev., 4, pp. 3–92) for a cross flow and its modified correlation that takes into account of flow inclination for inclined flows work best and are accurate enough to be used for the design of the heat exchanger.
Proceedings Papers
Proc. ASME. PVP2007, Volume 4: Fluid-Structure Interaction, 551-558, July 22–26, 2007
Paper No: PVP2007-26484
Abstract
A simple model to analyze the non-linear density-wave instability in a sodium cooled, helically coiled steam generator is developed. The model is formulated with three regions with moving boundaries. The homogeneous equilibrium flow model is used for the two-phase region and the shell-side energy conservation is also considered for the heat flux variation in each region. The proposed model is applied to the analysis of two-phase instability in a JAEA (Japan Atomic Energy Agency) 50MWt No.2 steam generator. The steady state results show that the proposed model accurately predicts the six cases of the operating temperatures in the primary and secondary sides. The sizes of the three regions and the secondary side pressure drop according to the flow rate, and the temperature variation in the vertical direction are also predicted well. The temporal variations of the inlet flow rate according to the throttling coefficient, the boiling and superheating boundaries and the pressure drop in the two-phase and superheating regions are obtained from the unsteady analysis.
Proceedings Papers
Proc. ASME. PVP2002, Thermal Hydraulic Problems, Sloshing Phenomena, and Extreme Loads on Structures, 121-131, August 5–9, 2002
Paper No: PVP2002-1137
Abstract
This paper addresses three-dimensional numerical analyses of the unsteady conjugate heat transfer and thermal stress for a PWR pressurizer surge line pipe with a finite wall thickness, subjected to internally thermal stratification. A primary emphasis of the present study is placed on the investigation of the effects of surge flow direction on the determinations of the transient temperature and thermal stress distributions in the pipe wall. In the present numerical analysis, the thermally stratified flows (in-surge flow and out-surge flow) in the pipe line are simulated using the standard κ-ε turbulent model and a simple and convenient numerical method of treating the unsteady conjugate heat transfer on a non-orthogonal coordinate system is developed. The unsteady conjugate heat transfer analysis method is implemented in a finite volume thermal-hydraulic computer code based on a non-staggered grid arrangement, SIMPLEC algorithm and higher-order bounded convection scheme. The finite element method is employed for the thermal stress analysis to calculate non-dimensional stress distributions at the piping wall as a function of time. Some numerical calculations are performed for a PWR pressurizer surge line pipe model with shortened length, subjected to internally thermal stratification caused either by insurge or outsurge flow with a specified velocity, and the results are discussed in detail.
Proceedings Papers
Proc. ASME. PVP2002, Thermal Hydraulic Problems, Sloshing Phenomena, and Extreme Loads on Structures, 63-70, August 5–9, 2002
Paper No: PVP2002-1129
Abstract
The present paper presents the experimental results for pressure drop in inclined tube bundles located in a rectangular duct. Measurements are made for pressure drop in triangular and rotated triangular tube arrays having P/d ratio of 1.6 and inclination angles of 30, 45, 60 and 90 degrees. The Reynolds number based on the free stream velocity and tube diameter ranges from 8×10 2 to 6.3×10 4 . The experimental results show that the magnitude of dimensionless pressure drop decreases significantly when the inclined angle is less than 45 degree. The measured data are compared with two existing correlations available in the literatures. The ESDU correlation agrees well with the present data for the triangular arrays. But some discrepancies are observed for the rotated triangular arrays when the inclined angles are 30 and 45 degrees. The Idel’chik correlation generally agrees well with the measured data for the rotated triangular arrays except for the inclined angle of 30 degree. The Idel’chik correlation needs modification for the triangular arrays. The modified Idel’chik correlation agrees well with the measured data within 10%. It is found that the present measured data can be applied to the evaluation and modification of previous correlations.
Proceedings Papers
Proc. ASME. PVP2002, Thermal Hydraulic Problems, Sloshing Phenomena, and Extreme Loads on Structures, 107-114, August 5–9, 2002
Paper No: PVP2002-1135
Abstract
An experimental study has been carried out to measure the pressure drop in a 271-pin fuel assembly of a liquid metal reactor. The rod pitch to rod diameter ratio (P/D) of the fuel assembly is 1.2 and the wire lead length to rod diameter ratio (H/D) is 24.84. Measurements are made for five different sections in a fuel assembly; inlet orifice, fuel assembly inlet, wire-wrapped fuel assembly, fuel assembly outlet and fuel assembly upper region. A series of water experiments have been conducted changing flow rate and water temperature. It is shown that the pressure drops in the inlet orifice and in the wire-wrapped fuel assembly are much larger than those in other regions. The measured pressure drop data in a wire-wrapped fuel assembly region is compared with the existing four correlations. It is shown that the correlation proposed by Cheng and Todreas fits the best with the present experimental data among the four correlations considered.
Proceedings Papers
Proc. ASME. PVP2004, Problems Involving Thermal Hydraulics, Liquid Sloshing, and Extreme Loads on Structures, 27-34, July 25–29, 2004
Paper No: PVP2004-3027
Abstract
A computational study of thermal striping in an upper plenum of KALIMER (Korea Advanced Liquid Metal Reactor) is performed. The primary objective of the present study is to obtain the distributions of the amplitude and frequency of a temperature fluctuation in the upper plenum of KALIMER. Two different treatments of the turbulent flow are considered, one is the RANS (Reynolds Averaged Navier-Stokes equation) approach and the other is the LES (Large Eddy Simulation) approach. In the RANS approach, the computation is performed using the CFX-4.2 code with the differential stress and flux turbulence model. In this computation the overall distributions of the velocity vector, temperature and temperature variance are obtained. In the LES the amplitude and frequency of the temperature fluctuation are obtained using the CFX-5.6 code. From the results of the RANS approach, the locations where thermal striping is mattered are obtained. It is found that in the KALIMER design this region is the edge of the UIS (Upper Internal Structure) bottom and the radial and circumferential distributions of the temperature fluctuation in this region are investigated. From the LES results the amplitude and frequency of the temperature fluctuation are obtained for various locations in the upper plenum of KALIMER. These results will be used for the calculation of the thermal stress caused by thermal striping.
Proceedings Papers
Proc. ASME. PVP2005, Volume 4: Fluid Structure Interaction, 867-873, July 17–21, 2005
Paper No: PVP2005-71512
Abstract
A computational study for the evaluation of the current turbulence models for the prediction of a thermal striping in a triple-jet is performed. The tested turbulence models are the two-layer model, the shear stress transport model and the elliptic relaxation model. These three turbulence models are applied to the prediction of the thermal striping in a triple-jet in which detailed experimental data are available. The performances of the tested turbulence models are evaluated through comparisons with the experimental data. The predicted mean and root-mean-square values of the temperature are compared with the experimental data, and the capability of predicting the oscillatory behavior of the ensemble-averaged temperature is investigated. From these works it is shown that only the elliptic relaxation model is capable of predicting the oscillatory behavior of the ensemble-averaged temperature. It is also shown that the elliptic relaxation model predicts best the time-averaged and root-mean-square of the temperature fluctuation. However, this model predicts a slower mixing at the far downstream of the jet.
Proceedings Papers
Proc. ASME. PVP2006-ICPVT-11, Volume 4: Fluid Structure Interaction, Parts A and B, 1587-1597, July 23–27, 2006
Paper No: PVP2006-ICPVT-11-93689
Abstract
A numerical study of evaluation of turbulence models for predicting the thermal stratification phenomenon is presented. The tested models are the elliptic blending model (EBM), the two-layer model, the shear stress transport model (SST) and the elliptic relaxation model (V2-f). These four turbulence models are applied to the prediction of a thermal stratification in an upper plenum of a liquid metal reactor experimented at the Japan Nuclear Cooperation (JNC). The algebraic flux model is used for treating the turbulent heat fluxes for all the models. The EBM and V2-f models predict properly the steep gradient of the temperature at the interface of the cold and hot regions which is observed in the experimental data, and the EBM and V2-f models have the capability of predicting the temporal oscillation of the temperature. The two-layer and SST models predict the diffusive temperature gradient at the interface of a thermal stratification and fail to predict a temporal oscillation of the temperature. In general the EBM predicts best the thermal stratification phenomenon in the upper plenum of the liquid metal reactor.
Journal Articles
Article Type: Research Papers
J. Pressure Vessel Technol. November 2007, 129(4): 583–592.
Published Online: October 29, 2006
Abstract
A computational study for an evaluation of the current turbulence models for the prediction of a thermal striping in a triple jet is performed. The tested turbulence models are the two-layer model, the shear stress transport model, and the elliptic relaxation model. These three turbulence models are applied to the prediction of a thermal striping in a triple jet in which detailed experimental data are available. The predicted time-averaged and root-mean-square values of the temperature are compared with the experimental data, and the capability of predicting the oscillatory behavior of the ensemble-averaged temperature is investigated. From these works, it is shown that only the elliptic relaxation model is capable of predicting the oscillatory behavior of the ensemble-averaged temperature. It is also shown that the elliptic relaxation model predicts best the time-averaged temperature and the root mean square of the temperature fluctuation. However, this model predicts a slower mixing at the far downstream of the jet.
Journal Articles
Article Type: Research Papers
J. Pressure Vessel Technol. November 2006, 128(4): 656–662.
Published Online: May 18, 2006
Abstract
A numerical study of the evaluation of turbulence models for predicting the thermal stratification phenomenon is presented. The tested models are the elliptic blending turbulence model (EBM), the two-layer model, the shear stress transport model (SST), and the elliptic relaxation model (V2-f). These four turbulence models are applied to the prediction of a thermal stratification in an upper plenum of a liquid metal reactor experimented at the Japan Nuclear Cooperation (JNC). The EBM and V2-f models predict properly the steep gradient of the temperature at the interface of the cold and hot regions that is observed in the experimental data, and the EBM and V2-f models have the capability of predicting the temporal oscillation of the temperature. The two-layer and SST models predict the diffusive temperature gradient at the interface of a thermal stratification and fail to predict a temporal oscillation of the temperature. In general, the EBM predicts best the thermal stratification phenomenon in the upper plenum of the liquid metal reactor.
Journal Articles
Journal:
Journal of Fluids Engineering
Article Type: Technical Papers
J. Fluids Eng. March 2005, 127(2): 388–392.
Published Online: October 27, 2004
Abstract
An experimental study has been carried out to measure the pressure loss at the side orifice of a liquid metal reactor fuel assembly. The characteristics of the pressure loss at the side orifice are investigated using the experimental data measured from 17 different types of side orifices that have different geometric shapes, dimensions, and arrangements of nozzles, and a correlation that covers the whole flow range by one equation is developed. The error range of the correlation is within ± 10 % , and most of the errors occurred in a region where the Reynolds number is small. The range of Reynolds numbers based on the hydraulic diameter of the orifice is 2000–350,000. It is found that the geometric factor is the most important parameter for the pressure loss when the Reynolds number is > 30,000 . As the Reynolds number becomes smaller, its effect becomes larger, and when the Reynolds number is small, it is the most important parameter for the pressure loss at the side orifices. The measured data shows a trend that the pressure loss coefficient increases as the number of orifices increases, and the effect of the longitudinal arrangement is small.
Journal Articles
Article Type: Technical Papers
J. Pressure Vessel Technol. November 2003, 125(4): 467–474.
Published Online: November 4, 2003
Abstract
This paper addresses three-dimensional numerical analyses of the unsteady conjugate heat transfer and thermal stress for a PWR pressurizer surge line pipe with a finite wall thickness, subjected to internally thermal stratification. A primary emphasis of the present study is placed on the investigation of the effects of surge flow direction on the determinations of the transient temperature and thermal stress distributions in the pipe wall. In the present numerical analysis, the thermally stratified flows (in-surge flow and out-surge flow) in the pipe line are simulated using the standard κ − ε turbulent model and a simple and convenient numerical method of treating the unsteady conjugate heat transfer on a non-orthogonal coordinate system is developed. The unsteady conjugate heat transfer analysis method is implemented in a finite volume thermal-hydraulic computer code based on a non-staggered grid arrangement, SIMPLEC algorithm and higher-order bounded convection scheme. The finite element method is employed for the thermal stress analysis to calculate non-dimensional stress distributions at the piping wall as a function of time. Some numerical calculations are performed for a PWR pressurizer surge line pipe model with shortened length, subjected to internally thermal stratification caused either by insurge or outsurge flow with a specified velocity, and the results are discussed in detail.
Journal Articles
Article Type: Technical Papers
J. Pressure Vessel Technol. May 2003, 125(2): 233–238.
Published Online: May 5, 2003
Abstract
An experimental study has been carried out to measure the pressure drop in a 271-pin fuel assembly of a liquid metal reactor. The rod pitch to rod diameter ratio P / D of the fuel assembly is 1.2 and the wire lead length to rod diameter ratio H / D is 24.84. Measurements are made for five different sections in a fuel assembly; inlet orifice, fuel assembly inlet, wire-wrapped fuel assembly, fuel assembly outlet and fuel assembly upper region. A series of water experiments have been conducted changing flow rate and water temperature. It is shown that the pressure drops in the inlet orifice and in the wire-wrapped fuel assembly are much larger than those in other regions. The measured pressure drop data in a wire-wrapped fuel assembly region is compared with the existing four correlations. It is shown that the correlation proposed by Cheng and Todreas fits best with the present experimental data among the four correlations considered.
Journal Articles
Article Type: Technical Papers
J. Pressure Vessel Technol. November 2001, 123(4): 517–524.
Published Online: May 23, 2001
Abstract
This paper presents an effective numerical method for predicting the stratified flow in a horizontal circular pipe. The method employs a body-fitted, nonorthogonal grid system to accommodate the pipe wall of circular geometry and the interface of the two fluids at different temperatures, of which the level is variable. The transient behaviors of fluid flow and temperature distribution in the piping are simulated using the finite volume approach. The convection term is approximated by a higher-order bounded scheme named HLPA, which is known as a high-resolution and bounded discretization scheme. The cell-centered, nonstaggered grid arrangement is adopted and the resulting checkerboard pressure oscillation is prevented by the application of modified momentum interpolation scheme. The SIMPLE algorithm is employed for the pressure and velocity coupling. The new way of treating the unsteady conjugate heat transfer problem is presented. The present method has been applied to the stratified flow in the pressurizer surge line of the nuclear reactor, and the results have been discussed. In addition, this study has investigated the effects of level of the interface between the two stratified fluids on the transient evolution of temperature distributions in the piping wall.