Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
NARROW
Format
Journal
Article Type
Subject Area
Topics
Date
Availability
1-2 of 2
S. Karp
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Journal:
Journal of Applied Mechanics
Article Type: Discussions
J. Appl. Mech. September 1964, 31(3): 568–569.
Published Online: September 1, 1964
Topics:
Propellers
Journal Articles
Journal:
Journal of Applied Mechanics
Article Type: Research Papers
J. Appl. Mech. June 1963, 30(2): 279–287.
Published Online: June 1, 1963
Abstract
This paper presents a study of the nature of the unsteady forces in the field of a propeller rotating in the vicinity of an appendage. The propeller is assumed to be one of a high aspect ratio while the appendage, although of finite width, is assumed to be infinitely long, and thus the problem is reduced to a study of the unsteady flow field around two flat plates. An essential feature of the analysis is that the mutual interference effects of propeller blade and the appendage are taken into account. The method of solution employs the technique of the substitution vortex which yields explicit analytic expressions for the quasisteady, apparent-mass and wake forces for both the propeller and appendage. These equations provide the magnitude and variation of the total forces as functions of tip clearance, distance, and relative size of appendage and propeller.