Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
NARROW
Format
Journal
Article Type
Conference Series
Subject Area
Topics
Date
Availability
1-6 of 6
R. P. J. O. M. van Rooij
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
Proc. ASME. WIND2003, ASME 2003 Wind Energy Symposium, 22-31, January 6–9, 2003
Paper No: WIND2003-350
Abstract
In modern wind turbine blades airfoils of more than 25% thickness can be found at mid-span and inboard locations. In particular at mid-span aerodynamic requirements dominate, demanding a high lift-to-drag ratio, moderate to high lift and low roughness sensitivity. Towards the root srtuctural requirements become more important. In this paper the performance for the airfoil series DU, FFA, S8xx, AH, Riso̸ and NACA are reviewed. For the 25% and 30% thick airfoils the best performing airfoils can be recognized by a restricted upper surface thickness and a S-shaped lower surface for aft-loading. Differences in performance of the DU 91-W2-250 (25%), S814 (24%) and Riso̸-A1-24 (24%) airfoil are small. For a 30% thickness the DU 97-W-300 meets the requirements best. At inboard locations the influence of rotation can be significant and 2d wind tunnel tests do not represent the characteristics well. The RFOIL code is believed to be capable of approximating the rotational effect. In particular the change in lift characteristics in the case of leading edge roughness for the 35% and 40% thick DU airfoils, respectively DU 00-W-350 and DU 00-W–401, is remarkable. Due to the strong reduction of roughness sensitivity the design for inboard airfoils could primarily focus on high lift and structural demands.
Proceedings Papers
Proc. ASME. WIND2003, ASME 2003 Wind Energy Symposium, 11-21, January 6–9, 2003
Paper No: WIND2003-352
Abstract
This paper gives an overview of the design and wind tunnel test results of the wind turbine dedicated airfoils developed by Delft University of Technology (DUT). The DU-airfoils range in maximum relative thickness from 15% to 40% chord. The first designs were made with XFOIL. Since 1995 RFOIL was used, a modified version of XFOIL, featuring an improved prediction around the maximum lift coefficient and capabilities of predicting the effect of rotation on airfoil characteristics. The measured effect of Gurney flaps, trailing edge wedges, vortex generators and trip wires on the airfoil characteristics of various DU-airfoils is presented. Furthermore, a relation between the thickness of the airfoil leading edge and the angle-of-attack for leading edge separation is given.
Journal Articles
Journal:
Journal of Solar Energy Engineering
Article Type: Research Papers
J. Sol. Energy Eng. August 2008, 130(3): 031015.
Published Online: July 16, 2008
Abstract
The investigation focuses on the analysis of the airfoil segment performances along rotor blades in the parked configuration. In this research, wind tunnel experiments on two twisted blade geometries with different airfoils played a dominant role. These measurements were carried out by the Swedish Aeronautical Research Institute, former FFA, and by the American National Renewable Energy Laboratories (NREL) during the Unsteady Aerodynamic Experiment. The spans of the blades were 2.375 m and 5 m , the STORK 5 WPX and the NREL Phase VI blade, respectively. Five span locations (inboard, midspan, outboard, and tip regions) were considered and compared with the 2D airfoil characteristics. Wing model experiments with similar blade aspect ratio were included in the research. Furthermore, the commercial computational fluid dynamics code FLUENT was used for the validation and analysis of the spanwise lift and drag coefficients at four different pitch settings, 20 deg , 30 deg , 45 deg , and 60 deg . The computed pressure distributions compared reasonably well, but the derived lift and drag showed quite some differences with the blade measurements. The lift coefficients for the sections beyond the leading-edge stall angle of the STORK blade were larger than for the NREL blade and were close to that of a wing model with similar airfoil and aspect ratio. Lift and drag coefficients for the sections of the two blades were always much smaller than the 2D results. The drag values for both blades showed quite some agreement, and airfoil and blade dependency seemed to be small.
Journal Articles
Journal:
Journal of Solar Energy Engineering
Article Type: Research Papers
J. Sol. Energy Eng. November 2005, 127(4): 496–502.
Published Online: July 12, 2005
Abstract
The effect of rotation has been investigated with emphasis on the impact of blade geometry on the “correction factor” in stall models. The data used came from field tests and wind tunnel experiments performed by the National Renewable Energy Laboratory and were restricted to the steady-state nonyawed conditions. Three blade layouts were available; a blade with constant chord without twist (phase II), a blade with constant chord and twist (phases III and IV), and a tapered blade with twist (phase VI). Effects due to twist and taper were determined from comparison of c n between the different blade layouts. The formulation of the stall model was rewritten so that the measured c n values could be used without reference to 2D airfoil performance. This enabled a direct comparison of the normal force characteristics between the four blade stations of the selected blade configurations. In particular, the correction term f used in stall models for rotational effects was analyzed. The comparison between the test results with a straight and a twisted blade showed that a relation for twist + pitch is required in f . In addition, a dependency of f on the angle-of-attack was identified in the measurements and it is recommended that this dependency be incorporated in the stall models.
Journal Articles
Journal:
Journal of Solar Energy Engineering
Article Type: Technical Papers
J. Sol. Energy Eng. November 2003, 125(4): 468–478.
Published Online: November 26, 2003
Abstract
In modern wind turbine blades, airfoils of more than 25% thickness can be found at mid-span and inboard locations. At mid-span, aerodynamic requirements dominate, demanding a high lift-to-drag ratio, moderate to high lift and low roughness sensitivity. Towards the root, structural requirements become more important. In this paper, the performance for the airfoil series DU FFA, S8xx, AH, Risø and NACA are reviewed. For the 25% and 30% thick airfoils, the best performing airfoils can be recognized by a restricted upper-surface thickness and an S-shaped lower surface for aft-loading. Differences in performance of the DU 91-W2-250 (25%), S814 (24%) and Risø-A1-24 (24%) airfoils are small. For a 30% thickness, the DU 97-W-300 meets the requirements best. Reduction of roughness sensitivity can be achieved both by proper design and by application of vortex generators on the upper surface of the airfoil. Maximum lift and lift-to-drag ratio are, in general, enhanced for the rough configuration when vortex generators are used. At inboard locations, 2-D wind tunnel tests do not represent the performance characteristics well because the influence of rotation is not included. The RFOIL code is believed to be capable of approximating the rotational effect. Results from this code indicate that rotational effects dramatically reduce roughness sensitivity effects at inboard locations. In particular, the change in lift characteristics in the case of leading edge roughness for the 35% and 40% thick DU airfoils, DU 00-W-350 and DU 00-W-401, respectively, is remarkable. As a result of the strong reduction of roughness sensitivity, the design for inboard airfoils can primarily focus on high lift and structural demands.
Journal Articles
Journal:
Journal of Solar Energy Engineering
Article Type: Technical Papers
J. Sol. Energy Eng. November 2003, 125(4): 488–496.
Published Online: November 26, 2003
Abstract
This paper gives an overview of the design and wind tunnel test results of the wind turbine dedicated airfoils developed by Delft University of Technology (DUT). The DU-airfoils range in maximum relative thickness from 15% to 40% chord. The first designs were made with the XFOIL code. The computer program RFOIL, which is a modified version of XFOIL featuring an improved prediction around the maximum lift coefficient and the capability of predicting the effect of rotation on airfoil characteristics, has been used to design the airfoils since 1995. The measured effect of Gurney flaps, trailing edge wedges, vortex generators (vg) and trip wires on the airfoil characteristics of various DU-airfoils is presented. Furthermore, a relation between the thickness of the airfoil leading edge and the angle-of-attack for leading edge separation is given.