Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
NARROW
Format
Journal
Article Type
Conference Series
Subject Area
Topics
Date
Availability
1-17 of 17
R. N. Parthasarathy
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Article Type: Research-Article
J. Energy Resour. Technol. January 2016, 138(1): 012202.
Paper No: JERT-15-1221
Published Online: December 1, 2015
Abstract
Palm methyl ester (PME) is an attractive alternate biofuel produced by the transesterification of palm oil with methanol. This paper is a sequel to our earlier papers on the comparison of the flame structure and emission characteristics of neat PME with those of petroleum-derived fuels (No. 2 diesel and neat Jet A). Blends of prevaporized Jet A fuel and PME (25%, 50%, and 75% by volume) were studied in a laminar flame environment at burner-exit equivalence ratios of 2, 3, and 7. The global combustion characteristics including flame length, CO and NO emission indices, radiative heat fraction, and in-flame profiles of species concentration (CO, CO 2 , NO, and O 2 ), temperature, and soot volume concentration were measured. The global CO emission index decreased significantly with the PME content in the blend at an equivalence ratio of 7; a 30% reduction was observed with the addition of 25% PME by volume, and a further reduction of 25% was observed with the addition of another 25% PME. The global NO emission index of the neat PME flame was 35% lower than that of the Jet A flame at an equivalence ratio of 2. The near-burner homogeneous gas-phase reaction zone increased in length with the addition of PME at all equivalence ratios. The concentration measurements highlighted the nonmonotonic variation of properties with the volume concentration of PME in the fuel blend. The fuel-bound oxygen and hydrogen of PME affected the combustion properties significantly.
Journal Articles
Article Type: Research-Article
J. Thermal Sci. Eng. Appl. March 2016, 8(1): 011006.
Paper No: TSEA-14-1085
Published Online: November 11, 2015
Abstract
Biofuels, such as canola methyl ester (CME), continue to receive considerable attention for their potential use as alternatives to petroleum diesel fuel. The studies on the application of biofuels in internal combustion engines, in general, have shown a considerable reduction in carbon monoxide (CO), soot, and radiative heat emissions, and a small increase in NO x emissions. Radiative heat transfer from flames, which is important in applications such as gas turbines and glass-manufacturing furnaces, has received little attention. The objective of this investigation was to document radiative heat transfer and radical and gas concentration measurements to understand the dominant mechanism of heat transfer in CME/diesel blend flames. In order to isolate the fuel chemical effects on the combustion characteristics of fuels, laminar flames of prevaporized liquid fuels were studied at injector-exit equivalence ratios of 1.2, 2, 3, and 7. Measurements of radiative heat transfer and flame structure including OH and CH radical concentration field were completed. While the peak temperatures in the various blend flames were comparable at the same equivalence ratio, the total flame radiation decreased with the increase in CME concentration in the fuel. Estimates of radiation from gaseous species and soot indicated that about 27–30% of the radiation was from gases, and the rest from soot. The gaseous species contribution to the flame radiation increased slightly with the biofuel content in the blend.
Journal Articles
Laminar Flame Characteristics of Partially Premixed Prevaporized Palm Methyl Ester and Diesel Flames
Article Type: Research-Article
J. Energy Resour. Technol. September 2014, 136(3): 032204.
Paper No: JERT-13-1338
Published Online: May 13, 2014
Abstract
Palm methyl ester (PME) is a renewable biofuel that is produced by the transesterification of palm oil and is a popular alternative fuel used in the transportation sector, particularly in Asia. The objective of this investigation was to study the combustion characteristics of flames of prevaporized number 2 diesel and PME in a laminar flame environment at initial equivalence ratios of 2, 3, and 7 and to isolate the factors attributable to chemical structure of the fuel. The equivalence ratio was changed by altering the fuel flow rate, while maintaining the air flow rate constant. The global CO emission index of the PME flames was significantly lower than that of the diesel flames; however, the global NO emission index was comparable. The radiative fraction of heat release and the soot volume fraction were lower for the PME flames compared to those in the diesel flames. The peak temperatures were comparable in both flames at an equivalence ratio of 2, but at higher equivalence ratios, the peak temperatures in the PME flames were higher. The measurements highlight the differences in the combustion properties of biofuels and petroleum fuels and the coupling effects of equivalence ratio.
Journal Articles
Article Type: Research Papers
J. Energy Resour. Technol. June 2012, 134(2): 021004.
Published Online: April 4, 2012
Abstract
Biofuels, such as canola methyl ester (CME) and soy-methyl ester (SME) derived from vegetable oil, are alternative sources of energy that have been developed to reduce the dependence on petroleum-based fuels. In the present study, CME, SME, and commercial Jet-A fuel were tested in a porous-media burner at an equivalence ratio of 0.8 at the burner entrance. The measured combustion characteristics included NOx and CO emission indices, radiative fraction of heat release, and axial temperature profile in the surface stabilized and extended flame. The effects of fuel on the injector and porous-media durability were also documented. The NOx emission index was higher for the SME and CME flames than that of the Jet-A flame. Furthermore, the axial temperature profiles were similar for all the flames. The prolonged use of CME and SME resulted in more solid-particle deposition on the interior walls of the injector and within the structure of the porous medium than for Jet-A fuel, thereby increasing the restriction to the fuel/air flow and pressure drop across the burner.
Journal Articles
Article Type: Research Papers
J. Energy Resour. Technol. June 2011, 133(2): 022203.
Published Online: May 26, 2011
Abstract
Methyl and ethyl esters of vegetable oils have become an important source of renewable energy with convenient applications in compression-ignition (CI) engines. While the use of biofuels results in a reduction of CO, particulate matter, and unburned hydrocarbons in the emissions, the main disadvantage is the increase of nitrogen oxides (NO x ) emissions. The increase in NO x emissions is attributed to differences in chemical composition and physical properties of the biofuel, which in turn affect engine operational parameters such as injection delay and ignition characteristics. The effects of fuel injection timing, which can compensate for these changes, on the performance and emissions in a single cylinder air-cooled diesel engine at partial loads using canola methyl ester and its blends with diesel are presented in this study. The engine is a single cylinder, four stroke, naturally aspirated, CI engine with a displacement volume of 280 cm 3 rated at 5 HP at 3600 rpm under a dynamometer load. It was equipped with a pressure sensor in the combustion chamber, a needle lift sensor in the fuel injector, and a crank angle sensor attached to the crankshaft. Additionally, the temperature of the exhaust gases was monitored using a thermocouple inside the exhaust pipe. Pollutant emissions were measured using an automotive exhaust gas analyzer. Advanced, manufacturer-specified standard, and delayed injection settings were applied by placing shims of different thicknesses under the injection pump, thus, altering the time at which the high-pressure fuel reached the combustion chamber. The start of injection was found to be insensitive to the use of biofuels in the engine. The late injection timing of the engine provided advantages in the CO and NO emissions with a small penalty in fuel consumption and thermal efficiency.
Proceedings Papers
Proc. ASME. POWER2009, ASME 2009 Power Conference, 59-69, July 21–23, 2009
Paper No: POWER2009-81102
Abstract
The performance of canola methyl ester (CME) biofuel in a partial swirl spray flame combustor is compared to that of No. 2 diesel fuel in this paper. The spray flame was enclosed in an optically accessible combustor and operated at atmospheric pressure with a co-flow of heated air. Fuel was delivered through a swirl-type air-blast atomizer with an injector diameter of 300 microns. A two-component phase Doppler particle analyzer was used to measure the spray droplet size, axial and radial velocity distributions. Radial and axial concentration measurements of NO, CO, CO 2 and O 2 were made in the flame environment. Axial and radial flame temperature measurements were made using a Type R thermocouple. The volumetric flow rates of fuel, atomization air and co-flow air were kept constant for both fuels. The droplet SMD at the nozzle exit for CME biofuel are smaller than the No. 2 diesel fuel implying faster vaporization rates for the CME biofuel. Flame temperature decreases more rapidly for the CME biofuel than for the No. 2 diesel fuel in both axial and radial directions. CME biofuel produced lower in-flame NO and CO peak concentrations than No. 2 diesel fuel.
Proceedings Papers
Proc. ASME. IMECE2009, Volume 3: Combustion Science and Engineering, 43-48, November 13–19, 2009
Paper No: IMECE2009-12398
Abstract
The effect of iodine number on NO x formation in laminar flames of three oxygenated biofuels was studied at an equivalence ratio of 2. Neat soy methyl ester, neat canola methyl ester, and methyl stearate, which had similar energy content and carbon chain length, were tested. The iodine numbers for these fuels varied from 0.5 to 142. Inflame NO x concentration and temperature were measured. The peak NO x concentration occurred in the near-burner region for all biofuels: 404 ppm for soy, 388 ppm for canola, and 123 ppm for the methyl stearate fuel, and did not correlate with the location of the peak temperature. Therefore, the peak concentration in this region was traced to the Fenimore mechanism. Also, the peak NO x concentration was significantly increased with iodine numbers (degree of unsaturation of the fuel molecule). Thus, a strong correlation exists between the chemical structure of the fuel and the NO x emission of the premixed flame.
Proceedings Papers
Proc. ASME. IMECE2008, Volume 3: Combustion Science and Engineering, 301-312, October 31–November 6, 2008
Paper No: IMECE2008-66225
Abstract
Spray flame characteristics of canola methyl ester biofuel (CME) and petroleum fuel (No. 2D) are described. An enclosed spray flame in a heated co-flow air environment at ambient pressure was studied. A single nozzle, swirl-type, air-blast atomizer with a nozzle diameter of 300 microns was used to create the spray. The spray droplet size and velocity distributions were measured using a two-component phase Doppler particle analyzer. In-flame temperature profiles were measured using a type-R thermocouple. Global emission indices of NO and CO were derived from concentration measurements in the combustion products. The overall equivalence ratio was kept at 0.75 to simulate lean burning conditions. The changes in atomization air flow rate produced similar changes in atomization characteristics of both fuels. Emission indices of NO and CO for petroleum fuel were higher than those of the CME fuel. In-flame temperature levels were lower for the CME fuel than for the petroleum fuel at corresponding flame locations.
Proceedings Papers
Proc. ASME. IMECE2007, Volume 6: Energy Systems: Analysis, Thermodynamics and Sustainability, 57-64, November 11–15, 2007
Paper No: IMECE2007-42112
Abstract
Knowledge of the combustion and pollutant emission characteristics is important in the application of both existing and newly developed fuels. A technique for the rapid characterization of flame radiation properties and emission characteristics of liquid fuels was developed for this purpose. Liquid fuel was injected into a heated air stream at known rates with a syringe pump; the feed line was heated (temperature of 425°C) to pre-vaporize the fuel before burning, to avoid the effects of evaporation parameters on measurements. Temperatures of the fuel and air were monitored using K-type thermocouples embedded within the feed lines. A laminar methane-air flame was issued from a stainless steel tubular burner (9.5mm inner diameter) and used as the ignition source. The methane supply was shut off after the onset of the burning of the vaporized liquid fuel, in order to eliminate the effects of burning methane in the measurements. Several liquid fuels were tested, including commercially available petroleum-based No. 2 diesel fuel, canola methyl ester (CME B 100) biodiesel, kerosene, methanol, toluene, and selected alkanes. A steady burning flame was achieved for all fuels. Radiative heat flux measurements were made with a high-sensitivity pyrheliometer and the radiant fraction of heat release calculated. The radiant heat fraction served as an indication of sooting tendency of the fuels. NO, CO, and CO 2 emission measurements were also made. The measurements demonstrate the feasibility of the current technique for the rapid characterization of combustion properties of liquid fuels, utilizing small fuel quantities.
Proceedings Papers
Proc. ASME. FEDSM2007, Volume 2: Fora, Parts A and B, 1369-1375, July 30–August 2, 2007
Paper No: FEDSM2007-37618
Abstract
Particle Image Velocimetry (PIV) measurements were made in a fully-developed turbulent channel flow. The channel test section was 1 ft wide and 1 inch in height and was constructed out of plexiglass. One wall of the test section was made removable. Four walls were used: a plexiglass smooth wall, and three hydrophobic walls: (i) a lotus paint coated plexiglass wall, (ii) a treated aluminum sheet attached to the plexiglass wall and (iii) a treated rough surface attached to the plexiglass wall. The bulk velocity was held constant to yield a Reynolds number (based on the channel half-height) of 5,500. Several images were averaged to obtain mean velocity and Reynolds shear stress and turbulence kinetic energy measurements. It was found that the mean velocities in the near-wall region were higher for the lotus-paint coated surface flow and the treated rough surface flow than the flows with the other two surfaces. The friction velocity estimated from the Reynolds shear stress measurements was significantly lower for these two flows as well. The reduction in the wall shear stress in these flows is attributed to the finite slip that occurs at the hydrophobic surfaces.
Proceedings Papers
Proc. ASME. HT-FED2004, Volume 1, 45-52, July 11–15, 2004
Paper No: HT-FED2004-56078
Abstract
A selectively laser sintered human tracheobronchial airway model was used to study periodic flows at different frequencies corresponding to inhalation and exhalation. The model was fabricated from a 3-d point could based on the Visible Human Male Project. The objective was to document the volumetric flow rate and pressure drop under periodic flow conditions and compare these values with those obtained in steady flow. The flow was cycled via a Programmable Logic computer (PLC) at a specified breathing frequency of 12 breaths per minute. The tracheal flows rate studied were 30, 50, and 120 liters per minute. The results indicated that significant differences existed between flow measurements made under steady conditions and periodic conditions; these differences became significant at high flow rates. The flow distribution in the right and left side of the airway model was asymmetric. The results also indicated the existence of both turbulent and laminar flow regimes at all tracheal flow rates.
Journal Articles
Article Type: Research Papers
J. Energy Resour. Technol. March 2009, 131(1): 012202.
Published Online: February 6, 2009
Abstract
As a result of decreasing petroleum supplies, new fuel sources, such as transesterified biofeedstock based oils and their blends with petroleum diesel fuels, have emerged with potential to partially replace conventional diesel and gasoline fuels. Although these fuels have shown some promising results in engine studies, their basic combustion properties have not been well documented. Also, research is underway to develop new fuels from other sources or by altering their molecular structure to be fungible with conventional fuels. Thus, there is a need for tests to characterize the combustion and emission properties of these new liquids, which are available only in small quantities at the research and development stage. This paper deals with a technique that meets those goals. The fuel was prevaporized and mixed with air and burnt in a tubular burner (9.5 mm inner diameter) at atmospheric pressure under laminar conditions. A pilot methane/air flame was used as the ignition source. The test conditions were so chosen that the measured properties could be attributed primarily to the fuel chemical structure. Several liquid fuels were tested, including commercially available petroleum-based No. 2 diesel fuel, canola methyl ester (CME B100) biodiesel, kerosene, methanol, toluene, and selected alkanes. The radiative heat flux from the flames was measured using a wide-angle pyrheliometer; the emissions from the flames were sampled to measure the concentration of CO, CO 2 , and NO. The measured radiant heat fraction values and the emission indices of NO and CO of both petroleum-derived and biofuels agreed well with those found in literature; thus, the feasibility of this method to rapidly characterize the combustion and emission properties of new liquids, such as biofuels, is demonstrated.
Proceedings Papers
Proc. ASME. ETCE2002, Engineering Technology Conference on Energy, Parts A and B, 29-35, February 4–5, 2002
Paper No: ETCE2002/CAE-29009
Abstract
The effects of buoyancy on the flow regimes of submerged gas injection were studied in this investigation. A capillary tube submerged in water was used for gas injection in microgravity and terrestrial conditions, and the resulting flow regimes and bubble sizes were documented. The effects of liquid co-flow and reduced surface tension were also analyzed. Under reduced gravity, three flow regimes were observed over the range of conditions tested. At low gas flow rates, the bubbles did not detach from the injector, forming an interconnected bubble cluster that adhered to the injector. Single bubbles started detaching and moving away from the injector when the Weber number reached a value around 3. At gas flow rates corresponding to a Weber number value of 10, the bubble coalescence regime was observed near the injector. It was found that the absence of buoyancy prevented the formation of the jetting regime. For all gas throughputs, the co-flowing liquid aided the detachment of the bubbles, resulting in the generation of more uniform bubbles than in quiescent liquids. The presence of co-flow resulted in a smaller bubble size accompanied by an increased frequency of bubble formation. Reduced surface tension produced a similar effect, resulting in smaller bubbles.
Proceedings Papers
Proc. ASME. FEDSM2005, Volume 1: Symposia, Parts A and B, 5-16, June 19–23, 2005
Paper No: FEDSM2005-77067
Abstract
A computational fluid dynamics package (FLUENT) was used to simulate the conditions of a falling sphere through a water medium with a zero shear stress condition (full slip) for Reynolds numbers in the range. Comparisons of the results were made with simulations of the flow past a sphere with no slip. Specific differences were observed in the drag coefficient, drag forces, axial velocity, radial velocity, and wake characteristics. A significant reduction in the drag coefficient was observed with the presence of slip on the surface. With a decrease in the Reynolds number the decreases in the wake structure became negligible, however, the differences in drag coefficient became significant. At high Reynolds numbers, the wake was skewed towards the rear of the sphere, under the full slip condition.
Journal Articles
Article Type: Technical Papers
J. Energy Resour. Technol. September 1997, 119(3): 184–192.
Published Online: September 1, 1997
Abstract
A study of the breakup of planar viscous liquid sheets subjected to gas flow on both sides was conducted. A linear spatial stability analysis was used to determine the instability wave characteristics. The analysis included the effects of liquid properties such as viscosity, density, and surface tension; the gas was treated as inviscid. Dispersion relations were obtained relating the wave growth rates to the frequency and other flow variables. The wave characteristics were determined by numerical solution of the governing dispersion relations for a wide range of operating conditions. In all cases, the gas velocity was found to be destabilizing; increases in the liquid density, viscosity, and surface tension were all found to have stabilizing effects. When the liquid sheet was exposed to unequal gas velocities, the wave propagation characteristics were found to be altered from the case of equal gas velocities.
Journal Articles
Journal:
Journal of Fluids Engineering
Article Type: Research Papers
J. Fluids Eng. June 1994, 116(2): 258–264.
Published Online: June 1, 1994
Abstract
The flow around a half-ellipsoid with axes ratio 12:6:1 mounted on a plane wall at an angle of attack of 25° and at a Reynolds number of 47,000 (based on the maximum chord) was studied using a three-dimensional LDV system. In this paper the mean velocity distributions in a volume enclosing the separated region and the near wake are described. The flow is shown to be consistent with the findings of Johnson (1991) based on flow visualization and related topological analysis. The flow on most of the pressure side was attached and laminar, while that on the suction side and in the wake was separated and turbulent. The region of separation had mean negative streamwise velocities as large as 25 percent of the freestream velocity, and the reversed-flow region extended up to one chord length behind the body. The measurements clearly reveal the complex vortex structure that arises from the three-dimensional separation.
Journal Articles
Journal:
Journal of Heat Transfer
Article Type: Research Papers
J. Heat Transfer. November 1986, 108(4): 951–959.
Published Online: November 1, 1986
Abstract
A theoretical and experimental study of turbulent bubbly condensing jets is reported. Tests involved initially monodisperse carbon dioxide bubbles in water (∼ 1 mm diameter bubbles with initial gas volume fractions of 2.4 and 4.8 percent) injected vertically upward in still water. Measurements were made of mean and fluctuating phase velocities, mean bubble diameters, mean bubble number intensities, and mean concentrations of dissolved carbon dioxide. Three theoretical methods were used to interpret the measurements: (1) locally homogeneous flow analysis, assuming infinitely fast interphase transport rates; (2) deterministic separated flow analysis, where finite interphase transport rates are considered but bubble/turbulence interactions are ignored; and (3) stochastic separated-flow analysis where both finite interphase transport rates and bubble/turbulence interactions are considered using random-walk methods. Both finite interphase transport rates and the turbulent dispersion of bubbles were important for present test conditions; therefore, only the stochastic separated flow analysis provided reasonable agreement with measurements.