Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
NARROW
Format
Article Type
Conference Series
Subject Area
Topics
Date
Availability
1-3 of 3
Qide Zhang
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
Proc. ASME. ISPS2014, 2014 Conference on Information Storage and Processing Systems, V001T04A001, June 23–24, 2014
Paper No: ISPS2014-6916
Abstract
This work introduces a method by using an empirical formula to quickly predict windage caused power loss of hard disk drives. The results obtained by the empirical formula are compared with those obtained by computational fluid dynamics (CFD) simulations and validated by the experimental measurement data. Good agreement is observed among these three sets of data.
Proceedings Papers
Proc. ASME. ISPS2013, ASME 2013 Conference on Information Storage and Processing Systems, V001T04A002, June 24–25, 2013
Paper No: ISPS2013-2810
Abstract
This paper presents an experimental study of digital narrowband active control on the flow-induced vibrations (FIV) on the head gimbals assembly (HGA) in a working hard disk drive (HDD). Firstly, the modal testing on the HDD was carried out, in which the disk modes were analyzed with a 1-D laser Doppler vibrometer (LDV) and the HGA vibration modes with a 3-D LDV. Secondly, a digital feedback control close-loop was implemented in experiments to suppress the FIV spectrum peaks on the HGA. In this close-loop, the HGA vibrations detected by the LDV were used as feedback error signals, then the signals was passed through a digital controller to generate feedback signals to drive a piezoelectric disk to actuate feedback acoustic pressure around the HGA. Active control experiments were conducted in narrow bands on five principal peaks in the HGA off-plate vibration spectrum, around 1256Hz, 1428Hz, 2141Hz, 2519Hz and 3469Hz, respectively. It is shown that distinct suppression of at least 10 dB can be achieved on all these HGA vibration peaks.
Proceedings Papers
Proc. ASME. NCAD2012, ASME 2012 Noise Control and Acoustics Division Conference, 583-592, August 19–22, 2012
Paper No: NCAD2012-1403
Abstract
Numerical simulations are presented on a feedback active control strategy for flow-induced off-track vibration of the head gimbals assembly (HGA) supporting the slider in hard disk drives, through suppressing pressure fluctuations around the HGA. A virtual sensing method is employed to enable the feedback signal changeable from pressure fluctuations at the physical sensor position to those at single “virtual sensor” positions closely around the HGA or a spatial average of pressure fluctuations along an HGA surface. Based on a linear control methodology, performance of the proposed active control strategy with different feedback signals has been investigated in two-dimensional simulations, where a physical pressure sensor and a pressure actuator are assumed on the inner-surface of the HDD cover to detect the pressure fluctuations and to actuate active pressure oscillations into HDD space respectively. The results show effective control on the HGA off-track vibration when the feedback signal is configured to minimize pressure fluctuations at specific positions closely around the HGA, such as the wake region. It is also shown that satisfying control effect can be achieved on the HGA off-track vibration in the global spectrum when the feedback signal is configured to minimize the spatial average of pressure fluctuations along the upper surface of the HGA.