Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
NARROW
Format
Article Type
Conference Series
Subject Area
Topics
Date
Availability
1-1 of 1
Peter Waswa
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
Proc. ASME. IDETC-CIE2020, Volume 2: 16th International Conference on Multibody Systems, Nonlinear Dynamics, and Control (MSNDC), V002T02A003, August 17–19, 2020
Paper No: DETC2020-22230
Abstract
It is known that a Lyapunov Perron (L-P) transformation converts a quasi-periodic system into a reduced system with a time-invariant coefficient. Though a closed form expression for L-P transformation matrix is missing in the literature, the application of combination of multiple theories would aid in such transformation. In this work, the authors have worked on extending the Floquet theory to find L-P transformation. As an example, a commutative system with linear quasi-periodic coefficients is transformed into a system with time-invariant coefficient analytically. Furthermore, for non-commutative systems, similar results are obtained in this work, with the help of an intuitive state augmentation and Normal Forms technique. The results of the reduced system are compared with the numerical integration technique for validation.
Topics:
Nonlinear dynamics