Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
NARROW
Format
Article Type
Conference Series
Subject Area
Topics
Date
Availability
1-4 of 4
Ning Bai
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
Proc. ASME. ICONE25, Volume 3: Nuclear Fuel and Material, Reactor Physics and Transport Theory; Innovative Nuclear Power Plant Design and New Technology Application, V003T13A010, July 2–6, 2017
Paper No: ICONE25-66690
Abstract
Small modular reactor is investigated worldwide with the advantages of lower initial investment and short construction period. Generally, the economy of small modular pressurized water reactor (PWR) is not as good as large PWR, so various applications of small PWR are investigated, such as marine reactor, heat supply and sea water desalination. Limited to the parameters of steam generator, the generating efficiency for the pressurized water reactor nuclear power plant is about 33%, while the steam temperature of supercritical fossil power plant can exceed 600°C and generating efficiency is more than 45%. The essence of a hybrid power plant is to use a fossil fuel to superheat wet steam in an outer steam superheating device, after the steam generator to improve the parameters of working fluid. On one hand, the innovative hybrid nuclear power plant which combines nuclear reactor with conventional thermal energy can improve the efficiency of small PWR. On the other hand, this hybrid power plant has lower carbon emission compared with traditional thermal power plant. This paper describes two different coupling schemes of small pressurized water reactor combined with supercritical thermal power plant using steam turbine. Efficiency of hybrid power plant is influenced by the coupling scheme, steam parameter of the superheating device outlet, the proportion of nuclear energy, efficiency of assemblies and so on. The plant efficiency becomes higher with the improvement of parameter of the superheating device’s outlet steam, and it is higher when the proportion of nuclear energy becomes lower. Take the 660MWt integrated small pressurized water reactor as an example, when the proportion of nuclear energy accounts for 48%, the thermal efficiency of this innovative hybrid power plant is about 43%,while the net efficiency is 41%, that is much higher than the efficiency of traditional pressurized water reactor, improving about 24 percent. As to the carbon emission, it depends on the coal consumption rate of power supply. The coal consumption rate of this hybrid power plant is 158g /kWh, while the consumption rate of thermal hybrid power plant is 280g/kWh, reducing about 44 percent. Also, the fundamental solutions of technical problems for this innovative hybrid power plant are discussed in the paper. Furthermore, several useful outcomes and suggestions for key equipments are put forward, such as the scheme of a superheating device and high-temperature steam turbine, and the possibility of using a lava boiler as the superheating device to improve the steam parameters after the steam generator is analyzed.
Proceedings Papers
Proc. ASME. ICONE25, Volume 5: Advanced and Next Generation Reactors, Fusion Technology; Codes, Standards, Conformity Assessment, Licensing, and Regulatory Issues, V005T05A007, July 2–6, 2017
Paper No: ICONE25-66181
Abstract
Small Modular Reactor has gained much attention in recent years. The passive residual heat removal system (PRHRS) is designed to increase the inherent safety features of the Integral Small Modular Reactor. There are many differences on the design of PRHRS. To get a comprehensive understanding of the PRHRS design in ISMRs, two simplified simulation models of ISMRs with different PRHRS design are built by the use of thermal hydraulic system code Relap5/Mod3.2 in this paper. A blackout accident is introduced to study the different performance between two PRHRS design models. The calculation results show that both two cases can successfully remove decay heat from the core. But there are still some differences between two cases in aspects of primary and PRHRS coolant parameters. Comparisons of the results from two cases are conducted in this paper, and the differences are carefully analyzed too.
Proceedings Papers
Proc. ASME. ICONE21, Volume 4: Thermal Hydraulics, V004T09A038, July 29–August 2, 2013
Paper No: ICONE21-15464
Abstract
Following China’s road map of nuclear technology development, the development of self-reliant nuclear design codes becomes one of the most significant steps in the plan. Among the nuclear design codes, thermal-hydraulic analysis code is indispensable because it is the foundation of reactor safety analysis and reactor design. Recently, China Guangdong Nuclear Power Group has launched a series of R&D projects of reactor design code development. The sub-channel analysis code-LINDEN becomes one of the key subprojects. Since the sub-channel code is developed for thermal-hydraulic design and safety analysis of pressurized water reactors (PWRs), the basic requirements for the LINDEN code are reliability and stability. Therefore, the mathematical model and numerical method developed in the code are based on the matured approaches that have been used in various industrial applications. These models and methods includes: four-equation drift framework model of two-phase flow; the classical heat transfer model and fuel rod model (Poisson equation) as well as the constitutive relations; explicit formulation and stepping algorithms for equation solutions. The solver module of the code is programmed using object-oriented C/C++ language with the structural design.. With all these features, the code was developed to be stable, scalable and compatible. The code’s applicability has been further improved after model improvement and design optimization according to characteristics of China’s proprietary type of reactor. COBRA-IV and LINDEN have been used to conduct the thermal-hydraulics analysis for the Daya bay unit 1 and 2 nuclear plants at the steady-state conditions. The results demonstrate that the two codes agree well with each other. The preliminary tests show that the LINDEN code should be suitable for thermal-hydraulics analysis of large PWRs.
Proceedings Papers
Proc. ASME. ICONE21, Volume 4: Thermal Hydraulics, V004T09A120, July 29–August 2, 2013
Paper No: ICONE21-16844
Abstract
The CHF in PWR fuel assemblies is usually predicted by the local flow correlation approach based on subchannel analysis while the effects of spacer grids, cold walls, non-uniform heat flux, etc are investigated. By using the subchannel code ATHAS to calculate each set of bundle CHF data, the local thermal-hydraulic parameters at DNB occurrence point were obtained. In present study, the minimum DNBR point method was applied to develop a new CHF correlation for PWR fuel assemblies. The so-called “three-step method” and “magnitude analysis method” were used to determine the shape and the expression of each item, respectively and the least square method was applied to determine the coefficients of the correlation. Based on the large database of CHF tests, the CHF correlation named ACC correlation has been developed to calculate the risk of DNB. The analysis and assessment results indicate that the ACC correlation can fit the experimental data well with high prediction accuracy and correct parametric trends. Coupled with subchannel code ATHAS, this correlation can simulate the thermal-hydraulics performances of PWR fuel assemblies exactly.