Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
NARROW
Format
Article Type
Conference Series
Subject Area
Topics
Date
Availability
1-4 of 4
Mohammad Mehdizadeh
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
Proc. ASME. SMASIS2012, Volume 1: Development and Characterization of Multifunctional Materials; Modeling, Simulation and Control of Adaptive Systems; Structural Health Monitoring, 869-877, September 19–21, 2012
Paper No: SMASIS2012-8177
Abstract
The next-generation design of structural components involves combining multiple functions. The goal of such Multi-functional structures (MFS) is to incorporate various tasks and functions such as structural, electrical and thermal features within a structural housing. The performance and behaviour characteristics of the multi-functional structures can be affected by degradation of any of the sub-components. This can have consequences on the safety, cost, and operational capability. Therefore, the timely and accurate detection, characterization and monitoring of the degradation in these sub-components are major concerns in the operational environment. This calls for Structural Health Monitoring (SHM) as a possible method to improve the safety and reliability of structures and thereby reduce their operational cost. As the application of SHM systems to monitor the status of the MFS increase, it will be increasingly important to determine the durability, reliability, and reparability of the components of SHM system such as sensors. The sensors themselves must be reliable enough so that they do not require replacement at intervals less than the economic lifetime of the structures and components they are monitoring. This is especially important when the deleterious structural changes in the sensor occurs without any discernible change in the structure being monitored In the present work, an assessment is carried out to quantify the degradation in the electric and electromechanical characteristics of polymer composite PZT sensors, under fatigue loading. Changes in the electrical properties of these sensors such as capacitance and inductance have been measured. The strain measurements of the sensor have also been compared to the theoretically calculated strain. The results show that the delineation of structural damage from sensor degradation is possible by monitoring the changes in the key electrical properties of the sensor components such as electrodes and PZT fibers as well as the comparison of experimentally measured and theoretically calculated strain values.
Proceedings Papers
Differentiating Structural Damage From Piezo-Fibre-Based Sensor Damage in Multifunctional Composites
Mohammad Mehdizadeh, Sabu John, Chun H. Wang, Viktor Verijenko, Wayne Rowe, Kamran Ghorbani, Amir Galehdar, Paul J. Callus
Proc. ASME. SMASIS2011, ASME 2011 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Volume 1, 119-128, September 18–21, 2011
Paper No: SMASIS2011-5086
Abstract
Structural health monitoring systems (SHMS) are increasingly being considered for implementation in a wide range of industries, including transport, civil infrastructure, and energy production. As the application of SHM systems increase, it will be increasingly important to quantify the durability, reliability, and reparability of the SHM system. This paper investigates the electrical and electro-mechanical characteristics of piezoelectric sensors in an attempt to distinguish sensor failure from structural damage. This study involved the measurements of pertinent electrical properties for three various types of advanced piezoelectric sensors under fatigue loading. Changes in the capacitance and inductance of these sensors have been recorded, highlighting the deleterious structural changes in the sensor itself without any discernible change in the structure being monitored.
Proceedings Papers
Proc. ASME. SMASIS2010, ASME 2010 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Volume 1, 115-124, September 28–October 1, 2010
Paper No: SMASIS2010-3697
Abstract
Structural health monitoring (SHM) systems are increasingly being considered for implementation in aerospace structures. As the application of SHM systems increase, it will be important to define standardized procedures to test durability, reliability, and longevity of the systems. The work presented in this paper is some preliminary work on the integrity of Piezoelectric sensors itself when used to monitor the strains in structures. This study involved the measurements of pertinent electrical properties of these sensors over 100,000 cycles of fatigue loading. Marked changes in the capacitance and inductance of these sensors highlighted deleterious structural changes in the sensor itself without any discernible change in the structure it is supposed to monitor. This might have significant implications in the reliability assessment of sensory data from SHM systems.
Proceedings Papers
Proc. ASME. SMASIS2009, Volume 2: Multifunctional Materials; Enabling Technologies and Integrated System Design; Structural Health Monitoring/NDE; Bio-Inspired Smart Materials and Structures, 529-539, September 21–23, 2009
Paper No: SMASIS2009-1387
Abstract
The primary focus of this paper is to report on the technique developed to extend a simulated damage site (such as a delamination) without inducing other extraneous damage modes. This was done in order to assess the suitability of curvature mode shape analyses in detecting damage types which are similar in type but different in severity or size. This paper highlights the use of vibration based testing on Carbon/Epoxy composite beams for damage detection. Such composites are commonly used in the aerospace and marine industry. The study comprises of testing carbon/epoxy composite beams with various embedded delaminations with a mechanical actuator and a Scanning Laser Vibrometer (SLV) as a sensor for recording the frequency response and the subsequent analyses of the acquired dynamic response based on Displacement and Curvature Mode Shapes. The paper also discusses the Finite Element Method (FEM)-based Analysis to validate the experimental results. In order to assess the effect of an increasing damage zone on a particular damage configuration, it was necessary to extend the damage without inflicting other damage types in the process. This paper reports on an innovative way of extending an existing delamination by a fatigue crack-growth technique. The ASTM E399-90 standard was used for the experiment and a carefully designed fatigue crack growth routine was implemented to advance the delamination in a controlled manner.