Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
NARROW
Format
Subjects
eBook Series
Article Type
Conference Series
Subject Area
Topics
Date
Availability
1-9 of 9
Massimo Borghi
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
Proc. ASME. FPMC2020, BATH/ASME 2020 Symposium on Fluid Power and Motion Control, V001T01A027, September 9–11, 2020
Paper No: FPMC2020-2759
Abstract
The paper deals with experimental tests and numerical simulations (3D and 0D fluid-dynamic modelling) of a conical poppet pressure relief valve with flow force compensation. The aim of the study was to realize a dynamic model of the valve, able to consider the effect of the pressure force, which arises downstream the metering edge and is determined by both the flow forces and the pressure recovery on the flow deflector. Starting from a 3D-CFD model, it was possible to study the interaction between the poppet opening and the pressure field, in order to evaluate the total pressure force as a function of the poppet displacement. The contribution of the pressure recovered on the deflector was separated from the traditional flow force and then parametrized as a function of some geometric features. It was then possible to develop a 0D fluid-dynamic model that is suitable not only for the considered valve but also for valves with similar geometries. Lastly, the model was validated using experimental data acquired on test bench for three different valves. The comparison of the predicted flow-pressure characteristics with the experimental ones indeed showed a good result matching. This model can also lead towards design considerations to study the behaviour of a larger number of valve geometries.
Proceedings Papers
Proc. ASME. FPMC2020, BATH/ASME 2020 Symposium on Fluid Power and Motion Control, V001T01A023, September 9–11, 2020
Paper No: FPMC2020-2753
Abstract
In the hydraulic servo-cylinders design, the circumferential grooves are used in order to reduce the effect of the locking force. This force arises as a consequence to the distribution of pressure around the piston, when both an eccentric position, caused by the load on the piston, and the manufacturing defects on the piston and cylinder surfaces are present. In this work an approach is presented for the calculation of the contribution of the grooves in the definition of the locking force and of the leakage flow rate. The mathematical model proposed is based on the Reynolds equation, properly combined with the continuity equation applied within the grooves. The results of the analysis are combined together with the ones coming from the analysis at the hydrostatic bearings at the rod ends, which have been analyzed on a previous step of the research. A numerical procedure is then created that, with the appropriate input, allows to study the different design configurations of the servo-cylinder. Results here shown are focused on exploring the effect of number, position, size of the grooves and manufacturing tolerances on the piston and cylinder. Simulations are also run under different operating conditions. For the real servo-cylinder configurations tested here, it is shown that five equally spaced grooves may be sufficient to decrease consistently the locking force while containing the flow losses. The procedure is also functional to investigate the bending and seizing of the piston during the different operating conditions, both in steady state and dynamic conditions.
Proceedings Papers
Proc. ASME. AJKFluids2019, Volume 1: Fluid Mechanics, V001T01A043, July 28–August 1, 2019
Paper No: AJKFluids2019-5474
Abstract
This works describes the modelling and simulation of a compact cartridge pressure amplifier for linear actuators, especially designed to fit within the rod of the piston. Hydraulic pressure amplifiers of the cylinder type are appreciated in hydraulic systems where high pressure work is needed, especially for a small part of the overall duty cycle. The use of these boosters allows the designer not to oversize the system, which will perform confining the high pressure operation only on the side of the hydraulic actuator. Starting from a previous research work on the same topic, this work proposes new designs for the cartridge amplifier to explore the influence of the control valve, which is the responsible for the delivering of the fluid to the amplifier. The new designs are discussed and then the results coming from the simulation performed with a lumped parameter model in a virtual test rig are shown. The operation of the amplifier is then applied to a more realistic duty cycle to illustrate and validate its operation.
Proceedings Papers
Proc. ASME. FPMC2018, BATH/ASME 2018 Symposium on Fluid Power and Motion Control, V001T01A057, September 12–14, 2018
Paper No: FPMC2018-8913
Abstract
Hydraulic pressure amplifiers of the cylinder type are much appreciated in hydraulic systems where high pressure work is needed only for a limited period of time, while during the remaining duty cycle the system operates at a standard level of pressure. The use of these elements allows the designer not to oversize the system, which will perform the work with a considerable power saving, confining the high pressure operation only on the side of the hydraulic cylinder. This works describes the modelling and simulation of a compact cartridge pressure amplifier for linear actuators. The cartridge amplifier is able to double or more the pressure in the system when needed and to not interfere during normal operation of the system. It has been designed to fit in the narrow space of the rod of normal hydraulic cylinder, being extremely compact and efficient. Designing such a component and the study of the main design parameters influence have required a strong work of modelling and simulation, performed with a lumped parameters approach to depict the dynamic behaviour of the amplifier. This work illustrates the building of the model and a first comparison between simulated and experimental data. Moreover, the simulation activity is enlarged to analysis of the influence of some operating and design parameters on the amplifier dynamic behavior.
eBook Chapter
Series: ASME Press Select Proceedings
Publisher: ASME Press
Published: 2016
ISBN: 9780791861080
Abstract
This paper focuses on the analysis of hydraulically balanced external gear pumps, in particular on the lubricating gap between the bushes and the gears. This topic is of key importance for the optimization of the machine efficiency because it both influences the mechanical-viscous friction and the volumetric losses. In this paper the intent is to investigate the role of the elastic deformation of the bushes surfaces, to compare the analysis done with rigid and elastic surfaces and finally to correlate the results with the design of the bushes balancing surfaces. A numerical procedure for the determination of the pressure distribution inside the gap bounded by gears sides and the bushes internal surfaces is presented and applied. With respect to past works of the authors, the procedure has been integrated taking into account the elastic deformation of the internal surfaces of the bushes and the variation of the dynamic viscosity of fluid, two well recognized phenomena that can play a key role on the determination of the bushes behaviour and lubricating gap pressure distribution. It is shown that, when the design of the bushes rear surfaces determines a strong balancing thrust, the bushes themselves need to tilt strongly with respect to the gears to generate an opportune widening thrust to avoiding contact with the gears. Useful suggestions for the bushes balancing surface design may be drawn from the analysis of the balancing maps reported in the paper, which illustrate the widening thrust magnitude and position in both the pure hydrodynamic and elasto-hydrodynamic cases, for different tilted positions and operating conditions.
Proceedings Papers
Proc. ASME. IMECE2015, Volume 4B: Dynamics, Vibration, and Control, V04BT04A006, November 13–19, 2015
Paper No: IMECE2015-51615
Abstract
In this paper a tool integrating a multibody full car model of a tractor and the hydraulic model of the suspension system is presented as a virtual tool able to help the designer and also the control tuning of the system. The full car approach is chosen in order to be able to describe all the vehicles movements (roll, yaw, pitch) while the detailed lumped parameters model of the hydraulic suspensions allows to consider the role of the electrohydraulic valves, accumulator, hydraulic actuator on the vehicle dynamic behaviour. The hydraulic model and the multibody model exchange forces and displacements at the joint points: one between actuator and sprung mass (chassis) and the other one between actuator and unsprung mass (front axle and wheels). Experimental test have been performed (suspension leveling maneuvers, tests on ISO 50008 track, bump tests) and the results of the numerical model have been compared with the experimental data, allowing the understanding of the influence of the numerous design and control parameters involved in the determination of the vehicle dynamic behaviour. The influence of mechanical and geometrical parameters on the damping force hysteresis measured during levelling test are shown and described. Finally, the dynamic behavior of the suspension is analyzed making reference to a dynamic test over a bump.
Proceedings Papers
Proc. ASME. IMECE2015, Volume 15: Advances in Multidisciplinary Engineering, V015T19A038, November 13–19, 2015
Paper No: IMECE2015-51632
Abstract
This paper focuses on the analysis of hydraulically balanced external gear pumps, in particular on the lubricating gap between the bushes and the gears. This topic is of key importance for the optimization of the machine efficiency because it both influences the mechanical-viscous friction and the volumetric losses. In this paper the intent is to investigate the role of the elastic deformation of the bushes surfaces, to compare the analysis done with rigid and elastic surfaces and finally to correlate the results with the design of the bushes balancing surfaces. A numerical procedure for the determination of the pressure distribution inside the gap bounded by gears sides and the bushes internal surfaces is presented and applied. With respect to past works of the authors, the procedure has been integrated taking into account the elastic deformation of the internal surfaces of the bushes and the variation of the dynamic viscosity of fluid, two well recognized phenomena that can play a key role on the determination of the bushes behaviour and lubricating gap pressure distribution. It is shown that, when the design of the bushes rear surfaces determines a strong balancing thrust, the bushes themselves need to tilt strongly with respect to the gears to generate an opportune widening thrust to avoiding contact with the gears. Useful suggestions for the bushes balancing surface design may be drawn from the analysis of the balancing maps reported in the paper, which illustrate the widening thrust magnitude and position in both the pure hydrodynamic and elasto-hydrodynamic cases, for different tilted positions and operating conditions.
Proceedings Papers
Francesco Pintore, Massimo Borghi, Riccardo Morselli, Alessandro Benevelli, Barbara Zardin, Francesco Belluzzi
Proc. ASME. FPNI2014, 8th FPNI Ph.D Symposium on Fluid Power, V001T04A004, June 11–13, 2014
Paper No: FPNI2014-7848
Abstract
This work aims to analyse a complete hydraulic system of a medium size agricultural tractor, in order to perform an energy dissipation analysis and to test possible alternative configurations and solutions. The fuel consumption and energy dissipation in off-road vehicles have infact become a key feature, given the great attention devoted to the need of reducing pollutant emissions, in order to satisfy the future emission limits. Standard and alternative architecture configurations are modelled and compared on the basis of the power consumption to perform the same duty cycle. Among the results, it is worth highlighting that a relevant percentage of energy may be saved with simple modifications in the hydraulic power generation group.
Proceedings Papers
Proc. ASME. DSCC2009, ASME 2009 Dynamic Systems and Control Conference, Volume 1, 267-274, October 12–14, 2009
Paper No: DSCC2009-2604
Abstract
A stationary model is adopted to determine the critical condition for which the slipper moves away from the swashplate in an axial piston machine. The aim of the analysis is to find the critical speed, i.e. the value of the machine speed for which the slipper moves away from the swashplate; usually this condition may determine bad operating behaviour of the machine, although a retainer plate is used to maintain the slipper sufficiently near to the swashplate. The influences of the pressure transition in the cylinder, the swashplate angle and the radial clearance between piston and cylinder on the critical speed are depicted. Successively, the role of the position of the point of application of the resultant force due to the slipper-retaining plate contact is analyzed.