Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
NARROW
Format
Journal
Article Type
Conference Series
Subject Area
Topics
Date
Availability
1-20 of 44
Marc P. Mignolet
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Article Type: Research-Article
ASME J. Risk Uncertainty Part B. March 2021, 7(1): 010906.
Paper No: RISK-20-1013
Published Online: January 21, 2021
Abstract
Quantifying effects of system-wide uncertainties (i.e., affecting structural, piezoelectric, and/or electrical components) in the analysis and design of piezoelectric vibration energy harvesters have recently been emphasized. The present investigation proposes first a general methodology to model these uncertainties within a finite element model of the harvester obtained from an existing finite element software. Needed from this software are the matrices relating to the structural properties (mass, stiffness), the piezoelectric capacitance matrix as well as the structural-piezoelectric coupling terms of the mean harvester. The thermal analogy linking piezoelectric and temperature effects is also extended to permit the use of finite element software that do not have piezoelectric elements but include thermal effects on structures. The approach is applied to a beam energy harvester. Both weak and strong coupling configurations are considered, and various scenarios of load resistance tuning are discussed, i.e., based on the mean model, for each harvester sample, or based on the entire set of harvesters. The uncertainty is shown to have significant effects in all cases even at a relatively low level, and these effects are dominated by the uncertainty on the structure versus the one on the piezoelectric component. The strongly coupled configuration is shown to be better as it is less sensitive to the uncertainty and its variability in power output can be significantly reduced by the adaptive optimization, and the harvested power can even be boosted if the target excitation frequency falls into the power saturation band of the system.
Journal Articles
Article Type: Research-Article
J. Comput. Nonlinear Dynam. December 2018, 13(12): 121006.
Paper No: CND-18-1112
Published Online: October 29, 2018
Abstract
Component-centric reduced order models (ROMs) have recently been developed in the context of linear structural dynamics. They lead to an accurate prediction of the response of a part of structure (referred to as the β component) while not requiring a similar accuracy in the rest of the structure (referred to as the α component). The advantage of these ROMs over standard modal models is a significantly reduced number of generalized coordinates for structures with groups of close natural frequencies. This reduction is a very desirable feature for nonlinear geometric ROMs, and thus, the focus of the present investigation is on the formulation and validation of component-centric ROMs in the nonlinear geometric setting. The reduction in the number of generalized coordinates is achieved by rotating close frequency modes to achieve unobservable modes in the β component. In the linear case, these modes then completely disappear from the formulation owing to their orthogonality with the rest of the basis. In the nonlinear case, however, the generalized coordinates of these modes are still present in the nonlinear stiffness terms of the observable modes. A closure-type algorithm is then proposed to finally eliminate the unobserved generalized coordinates. This approach, its accuracy and computational savings, is demonstrated first on a simple beam model and then more completely on the 9-bay panel model considered in the linear investigation.
Journal Articles
Journal:
Journal of Vibration and Acoustics
Article Type: Research-Article
J. Vib. Acoust. August 2017, 139(4): 041007.
Paper No: VIB-16-1396
Published Online: May 30, 2017
Abstract
Component-centric reduced order models (ROMs) are introduced here as small-size ROMs providing an accurate prediction of the linear response of part of a structure (the β component) without focusing on the rest of it (the α component). Craig–Bampton (CB) substructuring methods are first considered. In one method, the β component response is modeled with its fixed interface modes while the other adopts singular value eigenvectors of the β component deflections of the linear modes of the entire structure. The deflections in the α component induced by harmonic motions of these β component modes are processed by a proper orthogonal decomposition (POD) to model the α component response. A third approach starts from the linear modes of the entire structure which are dominant in the β component response. Then, the contributions of other modes in this part of the structure are approximated in terms of those of the dominant modes with close natural frequencies and similar mode shapes in the β component, i.e., these nondominant modal contributions are “lumped” onto dominant ones. This lumping permits to increase the accuracy in the β component at a fixed number of modes. The three approaches are assessed on a structural finite element model of a nine-bay panel with the modal lumping-based method yielding the most “compact” ROMs. Finally, good robustness of the ROM to changes in the β component properties (e.g., for design optimization) is demonstrated and a similar sensitivity analysis is carried out with respect to the loading under which the ROM is constructed.
Journal Articles
Journal:
Journal of Vibration and Acoustics
Article Type: Research-Article
J. Vib. Acoust. August 2015, 137(4): 041008.
Paper No: VIB-13-1252
Published Online: August 1, 2015
Abstract
This paper focuses on the formulation and validation of a novel perturbation method for the prediction of the forced response of mistuned bladed disks. At the contrary of most previous methods, this approach leads to a convergent series representation over the entire range of blade–disk coupling levels for small mistuning. The dominant parameter affecting the magnitude of the largest mistuning for which convergence occurs is shown to be the system damping with a weaker effect of the blade–disk coupling. Examples of application on a single degree-of-freedom per blade model and the reduced order model of a blisk demonstrate the potential of this novel approach. Finally, the applicability of this technique for the optimization of intentional mistuning pattern is shown.
Proceedings Papers
Proc. ASME. GT1990, Volume 5: Manufacturing Materials and Metallurgy; Ceramics; Structures and Dynamics; Controls, Diagnostics and Instrumentation; General, V005T14A008, June 11–14, 1990
Paper No: 90-GT-191
Abstract
A two-step method is presented for the determination of reliable approximations of the probability density function of the forced response of a randomly mistuned bladed disk. Under the assumption of linearity, an integral representation of the probability density function of the blade amplitude is first derived. Then, deterministic perturbation techniques are employed to produce simple approximations of this function. The adequacy of the method is assessed by comparing several approximate solutions with simulation results.
Proceedings Papers
Proc. ASME. GT1992, Volume 5: Manufacturing Materials and Metallurgy; Ceramics; Structures and Dynamics; Controls, Diagnostics and Instrumentation; Education, V005T14A009, June 1–4, 1992
Paper No: 92-GT-125
Abstract
A two-step method is presented for the determination of reliable approximations of the probability density function of the forced response of a randomly mistuned bladed disk. Under the assumption of linearity, an integral representation of the probability density function of the blade amplitude is first derived. Then, deterministic perturbation techniques are employed to produce simple approximations of this function. The adequacy of the method is demonstrated by comparing several approximate solutions with simulation results.
Proceedings Papers
Proc. ASME. GT1993, Volume 3A: General, V03AT15A045, May 24–27, 1993
Paper No: 93-GT-194
Abstract
The effects of blade-to-blade variations in the damping coefficients on the forced response of a bladed disk are investigated. It is found that this nonuniformity of the disk can lead to variations in the blades’ amplitudes of response which are similar, in magnitude, to those obtained with stiffness mistuning but are potentially more dangerous because of the skewness of the distribution toward large amplitudes. The influence of various structural parameters on the scatter of blade amplitudes is also studied. Finally, the adequacy of the combined Closed Form - Perturbation (CFP) method is demonstrated by comparison with simulation results.
Proceedings Papers
Proc. ASME. GT1995, Volume 5: Manufacturing Materials and Metallurgy; Ceramics; Structures and Dynamics; Controls, Diagnostics and Instrumentation; Education; IGTI Scholar Award, V005T14A043, June 5–8, 1995
Paper No: 95-GT-455
Abstract
In this paper, a novel perturbation technique is introduced for the determination of the forced vibration response of mistimed bladed disks. The proposed technique is adaptive in the sense that the level of approximation can be varied at will to accommodate any specificities of the tuned system and/or of the existing mistuning. This versatility of the proposed approach not only guarantees the reliability of the computed response but also leads to an excellent compromise between accuracy and computational effort. Numerical results are presented that demonstrate both the reliability of the computed response and the computational saving obtained by relying on the suggested perturbation technique as opposed to a straightforward steady state analysis.
Proceedings Papers
Proc. ASME. GT1996, Volume 5: Manufacturing Materials and Metallurgy; Ceramics; Structures and Dynamics; Controls, Diagnostics and Instrumentation; Education; General, V005T14A050, June 10–13, 1996
Paper No: 96-GT-414
Abstract
A recently introduced perturbation technique is employed to derive a novel closed form model for the probability density function of the resonant and near-resonant, steady state amplitude of blade response in randomly mistuned disks. In its most general form, this model is shown to involve six parameters but, in the important practical case of a pure stiffness (or frequency) mistuning, only three parameters are usually sufficient to completely specify this distribution. A series of numerical examples are presented that demonstrate the extreme reliability of this three-parameter model in accurately predicting the entire probability density function of the amplitude of response, and in particular the large amplitude tail of this distribution which is the most critical effect of mistuning.
Proceedings Papers
Proc. ASME. GT1997, Volume 4: Manufacturing Materials and Metallurgy; Ceramics; Structures and Dynamics; Controls, Diagnostics and Instrumentation; Education; IGTI Scholar Award, V004T14A056, June 2–5, 1997
Paper No: 97-GT-404
Abstract
In this paper, a novel approach to determine reliable estimates of the moments of the steady state resonant response of a randomly mistuned bladed disk is presented and the use of these moments to accurately predict the corresponding distribution of the amplitude of blade vibration is described. The estimation of the moments of the response is accomplished first by relying on a “joint cumulant closure” strategy that expresses higher order moments in terms of lower order ones. A simple modeling of the error terms of these approximations is also suggested that allows the determination of an improved, or accelerated, estimate of the required moments. The evaluation of the distribution of the amplitude of blade response is then accomplished by matching the moments computed by the cumulant closure with those derived from a three-parameter model recently derived. A first order approximation of the moments obtained for a simple structural model of a bladed disk yields a new parameter that can be used as a measure of the localization of the forced response. Then, numerical results demonstrate that the method provides extremely accurate estimates of the moments for all levels of structural coupling which in turn lead to a description of the amplitude of blade response that closely matches simulation results. Finally, a comparison with existing perturbation techniques clearly shows the increased accuracy obtained with the proposed joint cumulant closure formulation.
Proceedings Papers
Proc. ASME. GT1998, Volume 5: Manufacturing Materials and Metallurgy; Ceramics; Structures and Dynamics; Controls, Diagnostics and Instrumentation; Education, V005T14A054, June 2–5, 1998
Paper No: 98-GT-583
Abstract
The focus of the present investigation is on the estimation of the dynamic properties, i.e. masses, stiffnesses, natural frequencies, mode shapes and their statistical distributions, of turbomachine blades to be used in the accurate prediction of the forced response of mistuned bladed disks. As input to this process, it is assumed that the lowest natural frequencies of the blades alone have been experimentally measured, for example in a broach block test. Since the number of measurements is always less than the number of unknowns, this problem is indeterminate in nature. Two distinct approaches will be investigated to resolve the shortfall of data. The first one relies on the imposition of as many constraints as needed to insure a unique solution to this identification problem. Specifically, the mode shapes and modal masses of the blades are set to their design/tuned counterparts while the modal stiffnesses are varied from blade-to-blade to match the measured natural frequencies. The second approach, based on the maximum likelihood principle, yields estimates of all the structural parameters of the blades through the minimization of a specified “cost function”. The accuracy of these two techniques in predicting the forced response of mistuned bladed disks will be assessed on simple dynamic models of the blades.
Proceedings Papers
Proc. ASME. GT1999, Volume 4: Manufacturing Materials and Metallurgy; Ceramics; Structures and Dynamics; Controls, Diagnostics and Instrumentation; Education; IGTI Scholar Award; General, V004T03A039, June 7–10, 1999
Paper No: 99-GT-382
Abstract
The focus of the present investigation is on the estimation of the dynamic properties, i.e. masses, stiffnesses, natural frequencies, mode shapes and their statistical distributions, of turbomachine blades to be used in the accurate prediction of the forced response of mistuned bladed disks. As input to this process, it is assumed that the lowest natural frequencies of the blades alone have been experimentally measured, for example in a broach block test. Since the number of measurements is always less than the number of unknowns, this problem is indeterminate in nature. Three distinct approaches will be investigated to resolve the shortfall of data. The first one relies on the imposition of as many constraints as needed to insure a unique solution to this identification problem. Specifically, the mode shapes and modal masses of the blades are set to their design/tuned counterparts while the modal stiffnesses are varied from blade-to-blade to match the measured natural frequencies. The second approach, based on the maximum likelihood principle, yields estimates of all the structural parameters of the blades through the minimization of a specified “cost function”. Finally, the third approach provides a bridge between the first two methods being based on the second but yielding a mistuning model similar to that of the first approach. The accuracy of these three techniques in predicting the forced response of mistuned bladed disks will be assessed on simple dynamic models of the blades.
Proceedings Papers
Proc. ASME. GT2001, Volume 4: Manufacturing Materials and Metallurgy; Ceramics; Structures and Dynamics; Controls, Diagnostics and Instrumentation; Education; IGTI Scholar Award, V004T01A002, June 4–7, 2001
Paper No: 2001-GT-0414
Abstract
The focus of the present investigation is on the assessment and modeling of the local (spanning only a few blades) and global (encompassing the entire disk) effects of mistuning on the forced response of bladed disks. To this end, the concept of localization is first revisited and a new measure of this effect is introduced in terms of the number of blades the mistuning of which actually affects the forced response of a central blade. Using this new metric, it is demonstrated that high responding blades typically exhibit a high level of localization and that the reverse is not true. Thus, localization is not only disk dependent but also varies from blade-to-blade on the same disk. This observation is then used to validate a partial mistuning approach to the determination of the maximum amplitude of response over the entire population of disks. The results of this study indicate that the largest amplification due to mistuning occurs at very strong blade-to-blade coupling levels, at the contrary of a general perception, but is associated with extremely large mistuning levels. Finally, the above phenomenological observations are used to devise a modeling technique of both local and global components of mistuning. An example of application is presented that demonstrates the high accuracy of this approach through the entire blade-to-blade coupling domain.
Proceedings Papers
Proc. ASME. GT2001, Volume 4: Manufacturing Materials and Metallurgy; Ceramics; Structures and Dynamics; Controls, Diagnostics and Instrumentation; Education; IGTI Scholar Award, V004T03A048, June 4–7, 2001
Paper No: 2001-GT-0289
Abstract
The focus of the present investigation is on the assessment and modeling of the local (spanning only a few blades) and global (encompassing the entire disk) effects of mistuning on the forced response of bladed disks. To this end, the concept of localization is first revisited and a new measure of this effect is introduced in terms of the number of blades the mistuning of which actually affects the forced response of a central blade. Using this new metric, it is demonstrated that high responding blades typically exhibit a high level of localization and that the reverse is not true. Thus, localization is not only disk dependent but also varies from blade-to-blade on the same disk. This observation is then used to validate a partial mistuning approach to the determination of the maximum amplitude of response over the entire population of disks. The results of this study indicate that the largest amplification due to mistuning occurs at very strong blade-to-blade coupling levels, at the contrary of a general perception, but is associated with extremely large mistuning levels. Finally, the above phenomenological observations are used to devise a modeling technique of both local and global components of mistuning. An example of application is presented that demonstrates the high accuracy of this approach through the entire blade-to-blade coupling domain.
Proceedings Papers
Proc. ASME. GT2001, Volume 4: Manufacturing Materials and Metallurgy; Ceramics; Structures and Dynamics; Controls, Diagnostics and Instrumentation; Education; IGTI Scholar Award, V004T03A052, June 4–7, 2001
Paper No: 2001-GT-0293
Abstract
The focus of the present investigation is on the use of intentional mistuning of bladed disks to reduce their sensitivity to unintentional random mistuning. The class of intentionally mistuned disks considered here is limited, for cost reasons, to arrangements of two types of blades (A and B, say). A two-step procedure is then describe to optimize the arrangement of these blades around the disk to reduce the effects of unintentional mistuning. First, a pure optimization effort is undertaken to obtain the pattern(s) of the A and B blades that yields small/the smallest value of the largest amplitude of response to a given excitation in the absence of unintentional mistuning. Then, in the second step, a pattern screening technique based on a recently introduced measure of localization is used to determine which of the patterns does have a large/small sensitivity to random unintentional mistuning. In this manner, expensive Monte Carlo simulations can be eliminated. Examples of application involving both simple bladed disk models and a 17-blade industrial rotor clearly demonstrate the significant benefits of using this class of intentionally mistuned disks.
Journal Articles
Article Type: Research-Article
J. Comput. Nonlinear Dynam. July 2014, 9(3): 031008.
Paper No: CND-13-1181
Published Online: February 13, 2014
Abstract
This paper focuses on the development of nonlinear reduced order modeling techniques for the prediction of the response of complex structures exhibiting “large” deformations, i.e., a geometrically nonlinear behavior, which are nonintrusive, i.e., the structure is originally modeled within a commercial finite element code. The present investigation builds on a general methodology successfully validated in recent years on simpler beam and plate structures by: (i) developing a novel identification strategy of the reduced order model parameters that enables the consideration of the large number of modes (>50 say) that would be needed for complex structures, and (ii) extending a step-by-step strategy for the selection of the basis functions used to represent accurately the displacement field. The above novel developments are successfully validated on the nonlinear static response of a nine-bay panel structure modeled with 96,000 degrees of freedom within Nastran.
Proceedings Papers
Proc. ASME. IDETC-CIE2013, Volume 8: 22nd Reliability, Stress Analysis, and Failure Prevention Conference; 25th Conference on Mechanical Vibration and Noise, V008T13A055, August 4–7, 2013
Paper No: DETC2013-13352
Abstract
The response of blades in bladed disks can be represented as a sum of modal contributions from their cantilevered modes and a component induced by the motion of the disk and its interface with the blades. This last contribution referred to here as the disk-induced blade motions is generally considered to be tuned when performing mistuning analysis of bladed disks. Yet, as most of the blade properties, its structural coupling to the disk is likely to be uncertain, for example due to variations in thickness at the blade filet. One thus expects a mistuning of the interface stiffness and mass matrices in particular. The effect of this mistuning on the blade response, which does not appear to have received significant attention, is the focus of the present investigation. A Craig-Bampton methodology is introduced to highlight the disk-blade interface and a mistuning modeling of its stiffness matrix is introduced following the nonparametric modeling method. The analysis with various mistuning models is carried out on a 15-blade impeller finite element model at several resonances. It is found that a small mistuning of the disk-induced blade does not alter notably the mistuned response of the blades.
Journal Articles
Optimization of Intentional Mistuning Patterns for the Mitigation of the Effects of Random Mistuning
Article Type: Research-Article
J. Eng. Gas Turbines Power. June 2014, 136(6): 062505.
Paper No: GTP-13-1395
Published Online: February 11, 2014
Abstract
This paper focuses on the optimization of intentional mistuning patterns for the reduction of the sensitivity of the forced response of bladed disks to random mistuning. Intentional mistuning is achieved here by using two different blade types (denoted as A and B) around the disk. It is thus desired to find the arrangement of these A and B blades (A/B pattern) that leads to the smallest 99th percentile of the amplitude of blade response in the presence of random mistuning. It is first demonstrated that there usually is a large number of local minima and further that the cost of a function evaluation is high. Accordingly, two novel, dedicated optimization algorithms are formulated and validated to address this specific problem. Both algorithms proceed in a two-step fashion. The first step, which consists of an optimization in a reduced space, leads to a series of good initial guesses. A local search from these initial guesses forms the second step of the methods. A detailed validation effort of this new procedure was next achieved on a single-degree-of-freedom-per-blade model, a reduced order model of a blisk, and that of an impeller considered in an earlier study. In all validation cases, the two novel algorithms were found to converge to the global optimum or very close to it at a small computational cost. Finally, the results of these optimization efforts further demonstrate the value of intentional mistuning to increase the robustness of bladed disks to random mistuning.
Journal Articles
Article Type: Research-Article
J. Eng. Gas Turbines Power. June 2014, 136(6): 062506.
Paper No: GTP-13-1394
Published Online: February 11, 2014
Abstract
This paper focuses on extending an earlier investigation on the systematic and rational consideration of uncertainty in reduced order models of rotordynamics systems. The current effort concentrates on the consistent introduction of uncertainty in mass properties on the modal mass and gyroscopic matrices and on the unbalance force vector. The uncertainty in mass is separated into uncertainty that maintains the rotor symmetry and the one which disrupts it. Both types of uncertainties lead to variations in the system modal matrices but only the latter induces an unbalance. Accordingly, the approach permits the selection of separate levels on the uncertainty on the system properties (e.g., natural frequencies) and on the unbalance. It was first found that the unbalanced response is increased by considering the uncertainty in the rotor modal mass matrices. It was next noted that the approach presented not only permits the analysis of uncertain rotors but it also provides a computational framework for the assessment of various balancing strategies. To demonstrate this unique feature, a numerical experiment was conducted in which a population of rotors were balanced at low speed and their responses were predicted at their first critical speed. These response predictions were carried with the uncertainty in the system modal mass matrices but with or without the balancing weights effects on these matrices. It was found that the balancing at low speed may, in fact, lead to an increase in both the mean and 95th percentile of the response at critical speed.
Proceedings Papers
Proc. ASME. GT2013, Volume 7A: Structures and Dynamics, V07AT29A024, June 3–7, 2013
Paper No: GT2013-95779
Abstract
This paper focuses on extending an earlier investigation on the systematic and rational consideration of uncertainty in reduced order models of rotordynamics systems. The current effort concentrates on the consistent introduction of uncertainty in mass properties on the modal mass and gyroscopic matrices as well as on the unbalance force vector. The uncertainty in mass is separated into uncertainty that maintains the rotor symmetry and the one which disrupts it. Both types of uncertainties lead to variations in the system modal matrices but only the latter induces an unbalance. Accordingly, the approach permits the selection of separate levels on the uncertainty on the system properties (e.g. natural frequencies) and on the unbalance. It was first found that the unbalance response is increased by considering the uncertainty in the rotor modal mass matrices. It was next noted that the approach presented not only permits the analysis of uncertain rotors but it also provides a computational framework for the assessment of various balancing strategies. To demonstrate this unique feature, a numerical experiment was conducted in which a population of rotors were balanced at low speed and their responses were predicted at their first critical speed. These response predictions were carried with the uncertainty in the system modal mass matrices but with or without the balancing weights effects on these matrices. It was found that the balancing at low speed may in fact lead to an increase in both the mean and 95th percentile of the response at critical speed.