Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
NARROW
Format
Journal
Article Type
Conference Series
Subject Area
Topics
Date
Availability
1-4 of 4
M. Sa´nchez
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
Proc. ASME. ES2010, ASME 2010 4th International Conference on Energy Sustainability, Volume 1, 953-958, May 17–22, 2010
Paper No: ES2010-90279
Abstract
This work describes the thermoeconomic study of an integrated combined cycle parabolic trough power plant. The parabolic trough plant will economize boiler activity, and thus the thermoeconomic optimization of the configuration of the boiler, including the parabolic trough plant, will be achieved. The objective is to obtain the optimum design parameters for the boiler and the size of the parabolic field. The proposal is to apply the methodology employed by Duran [1] and Valde´s et. al. [2], but with the inclusion of the parabolic trough plant into the optimization problem. It is important to point out that the optimization model be applied to a single pressure level configuration. For future works, it is proposed that the same model be applied to different configurations of integrated combined cycle solar power plants. As a result the optimum thermoeconomic design will be obtained for a parabolic trough plant used to economize the HRSG.
Proceedings Papers
Proc. ASME. HT-FED2004, Volume 1, 887-894, July 11–15, 2004
Paper No: HT-FED2004-56663
Abstract
In this work has been analyzed theoretically and experimentally imbibition under the influence of a longitudinal temperature gradient. Imbibition into vertical and circular cells was analyzed using the lubrication theory. The temperature-dependence of viscosity and surface tension were included in the lubrication equations. In both cases was found that theory describes very well the experimental trends. Moreover, experiments using glycerol show a notable acceleration of the fronts under positive gradients.
Proceedings Papers
Proc. ASME. GT2003, Volume 1: Turbo Expo 2003, 527-539, June 16–19, 2003
Paper No: GT2003-38685
Abstract
In 1999, ITP (Industria de Turbopropulsores, S.A.) launched a wide on-going research program focusing on new technologies to provide significant improvements in Low Pressure Turbines cost and weight. As consequence of the new technologies the experience limits are exceeded and new unknown concepts, like high stage loading turbines, must be explored and then a wide experimental work is required for validation purposes. Cold flow single stage rigs in high-speed facilities were selected by ITP as main vehicle to carry out the experimental validation. Single stage Low Pressure Turbine rigs have low-pressure ratio and power consumption, therefore efficiency predictions based on temperature drop require high accuracy thermocouple measurement systems (precision uncertainties lower than ±50 mK), if small efficiency variations must be captured. In this paper, a detailed uncertainty analysis is introduced and a temperature measurement system that allows achieving such high measurement accuracy is evaluated and described. Type T thermocouples are proposed for use in the range 0°C to 80°C, which are individually calibrated. The procedure followed for this calibration is presented and how is possible to achieve a precision of 30 mK. It is also shown as conventional UTR based on metal plates can behave as good as thermal baths in terms of temperature uniformity and errors, with the adequate isolation and temperature reference calibration. The conventional data recording and voltage measurement systems are experimentally evaluated, and they are found as main source of temperature errors. Although following some recommendations the precision of those systems can be improved, it is experimentally probed and therefore suggested the use of high accuracy voltmeter with a commutation unit to reduce significantly the temperature uncertainty. Finally a miniature Kiel Shroud is proposed and aerodynamically characterised in a high-speed facility. Mach, Reynolds number, yaw, blockage and manufacturing tolerance impact on recovery factor can be inferred from those results.
Journal Articles
Journal:
Journal of Solar Energy Engineering
Article Type: Research Papers
J. Sol. Energy Eng. February 1989, 111(1): 24–31.
Published Online: February 1, 1989
Abstract
This article presents the measurements and experiments conducted on the external receiver: the so-called Advanced Sodium Receiver (ASR) of the Small Solar Power Systems (SSPS) Project of the International Energy Agency (IEA) in southern Spain. The basis of this experiment was to provide loss measurements for later use in determining receiver performance. The tests to evaluate thermal losses consisted in operating the receiver with the doors open and circulating the sodium in normal and reverse flow without providing any incident power from the heliostat field (flux-off technique). In this way, total thermal losses are calculated as the energy lost by the sodium. Radiative losses have been calculated based on theoretical calculations and some results have been compared with infrared thermography measurements. Conductive losses are small and have been estimated by flux-off experiments with the receiver doors closed. Convective losses were evaluated subtracting radiative and conductive losses from the total thermal losses. Optical losses were assessed using absorptance measurements of the receiver coating. A simplified analytical model has been developed to calculate losses and ASR efficiency during operation. In spite of the method’s simplicity, the results are very similar to those found by other investigators, verified simulation programs, and test results.