Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
NARROW
Format
Journal
Article Type
Conference Series
Subject Area
Topics
Date
Availability
1-3 of 3
M. Montazeri-Gh.
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
Proc. ASME. GT1996, Volume 1: Turbomachinery, V001T01A071, June 10–13, 1996
Paper No: 96-GT-241
Abstract
This paper describes an actuator placement methodology for the active control of purely one-dimensional instabilities of a seven-stage axial compressor using an air bleeding strategy. In this theoretical study, using stage-by-stage non-linear modelling based on the conservation equations of mass, momentum, and energy, a scheduling LQR (Linear Quadratic Regulator) controller is designed for several actuator locations in a compressor from the first stage to the plenum. In this controller design, the LQR weighting matrices are selected so that the associated cost function includes only air bleeding mass flow leading to the minimisation of the air bleed. The LQR cost function represents a measure of the consumption of air bleeding and can be calculated analytically using the solution of an Algebraic Riccati Equation. From analysis of the cost at different compressor stages, the location of an air bleeding actuator is selected at the stage with the minimum cost. Finally, using an ACSL simulation program, the scheduling controller has been integrated with a non-linear. stage-by-stage model and the time response of the air bleeding mass flow at different locations has been obtained to confirm the results from the analytical approach. Results are presented to show actively stabilised compressor flow beyond the surge point where the air bleed is minimised. These results also indicate the preferred location of the actuator at the compressor downstream stages for both low and high compressor speeds.
Journal Articles
Article Type: Research-Article
J. Eng. Gas Turbines Power. September 2014, 136(9): 092602.
Paper No: GTP-14-1079
Published Online: April 18, 2014
Abstract
In this paper, common faults in main components of an industrial two-shaft gas turbine are simulated, and the fault signatures are determined in both part and full-load conditions. As fouling and erosion are the most important and effective causes of performance deterioration in gas turbines (GTs), the effects of these faults on the performance of all three main components including compressor, gas generator turbine, and power turbine are studied and their effects on the overall efficiency of the whole system are analyzed. In this study, the faults simulation is performed by changing the health parameters (flow capacity and isentropic efficiency) of each GT components via modification of the compressor and turbines characteristic curves. The results obtained from the compressor fouling simulation are validated against the published experimental data; the validation results represent acceptable simulation accuracy in estimation of the measurement parameters deviation. Moreover, the fault signatures are determined in full-load conditions, and the effects of the examined faults on the main GT parameters are analyzed; in this way, the key measurement parameters in identification of these faults are introduced. Finally, in order to identify the fault signatures in part-load conditions, the fault implantation process is performed for each 10% reduction in gas turbine loads. Simulation results demonstrate that the fault signatures have different sensitivity to load variations, and thus, these are in general a function of the GT loading conditions.
Journal Articles
Article Type: Research-Article
J. Eng. Gas Turbines Power. March 2014, 136(3): 031601.
Paper No: GTP-13-1093
Published Online: November 27, 2013
Abstract
This paper presents the metaheuristic design and optimization of fuzzy-based gas turbine engine (GTE) fuel flow controller by means of a hybrid invasive weed optimization/particle swarm optimization (IWO/PSO) algorithm as an innovative guided search technique. In this regard, first, a Wiener model for the GTE as a block-structured model is developed and validated against experimental data. Subsequently, because of the nonlinear nature of GTE, a fuzzy logic controller (FLC) strategy is considered for the engine fuel system. For this purpose, an initial FLC is designed and the parameters are then tuned using a hybrid IWO/PSO algorithm where the tuning process is formulated as an engineering optimization problem. The fuel consumption, engine safety, and time response are the performance indices of the defined objective function. In addition, two sets of weighting factors for objective function are considered, whereas in one of them savings in fuel consumption and in another achieving a short response time for the engine is a priority. Moreover, the optimization process is performed in two stages during which the database and the rule base of the initial FLC are tuned sequentially. The simulation results confirm that the IWO/PSO-FLC approach is effective for GTE fuel controller design, resulting in improved engine performance as well as ensuring engine protection against physical limitations.