Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
NARROW
Format
Journal
Article Type
Conference Series
Subject Area
Topics
Date
Availability
1-11 of 11
Kevin J. Albrecht
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
Proc. ASME. ES2020, ASME 2020 14th International Conference on Energy Sustainability, V001T02A015, June 17–18, 2020
Paper No: ES2020-1676
Abstract
Ray-tracing and heat-transfer simulations of discrete particles in a representative elementary volume were performed to determine the effective particle-cloud absorptance and temperature profiles as a function of intrinsic particle absorptance values (0 – 1) for dilute solids volume fractions (1 – 3%) representative of falling particle receivers used in concentrating solar power applications. Results showed that the average particle-cloud absorptance is increased above intrinsic particle absorptance values as a result of reflections and subsequent reabsorption (light trapping). The relative increase in effective particle-cloud absorptance was greater for lower values of intrinsic particle absorptance and could be as high as a factor of two. Higher values of intrinsic particle absorptance led to higher simulated steady-state particle temperatures. Significant temperature gradients within the particle cloud and within the particles themselves were also observed in the simulations. Findings indicate that dilute particle-cloud configurations within falling particle receivers can significantly enhance the apparent effective absorptance of the particle curtain, and materials with higher values of intrinsic particle absorptance will yield greater radiative absorptance and temperatures.
Proceedings Papers
Proc. ASME. ES2020, ASME 2020 14th International Conference on Energy Sustainability, V001T02A001, June 17–18, 2020
Paper No: ES2020-1607
Abstract
A focus in the development of the next generation of concentrating solar power (CSP) plants is the integration of high temperature particle receivers with improved efficiency supercritical carbon dioxide (sCO 2 ) power cycles. The feasibility of this type of system depends on the design of a particle-to-sCO 2 heat exchanger. This work presents a finite element analysis (FEA) model to analyze the thermal performance of a particle-to-sCO 2 heat exchanger for potential use in a CSP plant. The heat exchanger design utilizes a moving packed bed of particles in crossflow with sCO 2 which flows in a serpentine pattern through banks of microchannel plates. The model contains a thermal analysis to determine the heat exchanger’s performance in transferring thermal energy from the particle bed to the sCO 2 . Test data from a prototype heat exchanger was used to verify the performance predictions of the model. The verification of the model required a multitude of sensitivity tests to identify where fidelity needed to be added to reach agreement between the experimental and simulated results. For each sensitivity test in the model, the effect on the performance is discussed. The model was shown to be in good agreement on the overall heat transfer coefficient of the heat exchanger with the experimental results for a low temperature set of conditions with a combination of added sensitives. A set of key factors with a major impact on the performance of the heat exchanger are discussed.
Proceedings Papers
Proc. ASME. ES2020, ASME 2020 14th International Conference on Energy Sustainability, V001T02A011, June 17–18, 2020
Paper No: ES2020-1664
Abstract
Realizing cost-effective, dispatchable, renewable energy production using concentrated solar power (CSP) relies on reaching high process temperatures to increase the thermal-to-electrical efficiency. Ceramic based particles used as both the energy storage medium and heat transfer fluid is a promising approach to increasing the operating temperature of next generation CSP plants. The particle-to-supercritical CO 2 (sCO 2 ) heat exchanger is a critical component in the development of this technology for transferring thermal energy from the heated ceramic particles to the sCO 2 working fluid of the power cycle. The leading design for the particle-to-sCO 2 heat exchanger is a shell-and-plate configuration. Currently, design work is focused on optimizing the performance of the heat exchanger through reducing the plate spacing. However, the particle channel geometry is limited by uniformity and reliability of particle flow in narrow vertical channels. Results of high temperature experimental particle flow testing are presented in this paper.
Proceedings Papers
Proc. ASME. ES2019, ASME 2019 13th International Conference on Energy Sustainability, V001T03A006, July 14–17, 2019
Paper No: ES2019-3893
Abstract
The use of solid particles as a heat-transfer fluid and thermal storage media for concentrating solar power is a promising candidate for meeting levelized cost of electricity (LCOE) targets for next-generation CSP concepts. Meeting these cost targets for a given system concept will require optimization of the particle heat-transfer fluid with simultaneous consideration of all system components and operating conditions. This paper explores the trade-offs in system operating conditions and particle thermophysical properties on the levelized cost of electricity through parametric analysis. A steady-state modeling methodology for design point simulations dispatched against typical meteorological year (TMY) data is presented, which includes computationally efficient submodels of a falling particle receiver, moving packed-bed heat exchanger, storage bin, particle lift, and recompression supercritical CO 2 (sCO 2 ) cycle. The components selected for the baseline system configuration presents the most near-term realization of a particle-based CSP system that has been developed to date. However, the methodology could be extended to consider alternative particle receiver and heat exchanger concepts. The detailed system-level model coupled to component cost models is capable of propagating component design and performance information directly into the plant performance and economics. The system-level model is used to investigate how the levelized cost of electricity varies with changes in particle absorptivity, hot storage bin temperature, heat exchanger approach temperature, and sCO 2 cycle operating parameters. Trade-offs in system capital cost and solar-to-electric efficiency due to changes in the size of the heliostat field, storage bins, primary heat exchanger, and receiver efficiency are observed. Optimal system operating conditions are reported, which approach levelized costs of electricity of $0.06 kW e −1 hr −1 .
Journal Articles
Journal:
Journal of Solar Energy Engineering
Article Type: Research-Article
J. Sol. Energy Eng. April 2019, 141(2): 021001.
Paper No: SOL-18-1045
Published Online: January 8, 2019
Abstract
This paper presents an evaluation of alternative particle heat-exchanger designs, including moving packed-bed and fluidized-bed designs, for high-temperature heating of a solar-driven supercritical CO 2 (sCO 2 ) Brayton power cycle. The design requirements for high pressure (≥20 MPa) and high temperature (≥700 °C) operation associated with sCO 2 posed several challenges requiring high-strength materials for piping and/or diffusion bonding for plates. Designs from several vendors for a 100 kW-thermal particle-to-sCO 2 heat exchanger were evaluated as part of this project. Cost, heat-transfer coefficient, structural reliability, manufacturability, parasitics and heat losses, scalability, compatibility, erosion and corrosion, transient operation, and inspection ease were considered in the evaluation. An analytic hierarchy process was used to weight and compare the criteria for the different design options. The fluidized-bed design fared the best on heat transfer coefficient, structural reliability, scalability, and inspection ease, while the moving packed-bed designs fared the best on cost, parasitics and heat losses, manufacturability, compatibility, erosion and corrosion, and transient operation. A 100 kW t shell-and-plate design was ultimately selected for construction and integration with Sandia's falling particle receiver system.
Journal Articles
Journal:
Journal of Solar Energy Engineering
Article Type: Research-Article
J. Sol. Energy Eng. April 2019, 141(2): 021016.
Paper No: SOL-18-1467
Published Online: January 8, 2019
Abstract
Oxide particles have potential as robust heat transfer and thermal energy storage (TES) media for concentrating solar power (CSP). Particles of low-cost, inert oxides such as alumina and/or silica offer an effective, noncorrosive means of storing sensible energy at temperatures above 1000 °C. However, for TES subsystems coupled to high-efficiency, supercritical-CO 2 cycles with low temperature differences for heat addition, the limited specific TES (in kJ kg −1 ) of inert oxides requires large mass flow rates for capture and total mass for storage. Alternatively, reactive oxides may provide higher specific energy storage (approaching 2 or more times the inert oxides) through adding endothermic reduction. Chemical energy storage through reduction can benefit from low oxygen partial pressures (P O2 ) sweep-gas flows that add complexity, cost, and balance of plant loads to the TES subsystem. This paper compares reactive oxides, with a focus on Sr-doped CaMnO 3–δ perovskites, to low-cost alumina-silica particles for energy capture and storage media in CSP applications. For solar energy capture, an indirect particle receiver based on a narrow-channel, counterflow fluidized bed provides a framework for comparing the inert and reactive particles as a heat transfer media. Low-P O2 sweep gas flows for promoting reduction impact the techno-economic viability of TES subsystems based on reactive perovskites relative to those using inert oxide particles. This paper provides insights as to when reactive perovskites may be advantageous for TES subsystems in next-generation CSP plants.
Journal Articles
Journal:
Journal of Solar Energy Engineering
Article Type: Research-Article
J. Sol. Energy Eng. June 2019, 141(3): 031006.
Paper No: SOL-17-1302
Published Online: October 26, 2018
Abstract
Particle-based concentrating solar power (CSP) plants have been proposed to increase operating temperature for integration with higher efficiency power cycles using supercritical carbon dioxide (sCO 2 ). The majority of research to date has focused on the development of high-efficiency and high-temperature particle solar thermal receivers. However, system realization will require the design of a particle/sCO 2 heat exchanger as well for delivering thermal energy to the power-cycle working fluid. Recent work has identified moving packed-bed heat exchangers as low-cost alternatives to fluidized-bed heat exchangers, which require additional pumps to fluidize the particles and recuperators to capture the lost heat. However, the reduced heat transfer between the particles and the walls of moving packed-bed heat exchangers, compared to fluidized beds, causes concern with adequately sizing components to meet the thermal duty. Models of moving packed-bed heat exchangers are not currently capable of exploring the design trade-offs in particle size, operating temperature, and residence time. The present work provides a predictive numerical model based on literature correlations capable of designing moving packed-bed heat exchangers as well as investigating the effects of particle size, operating temperature, and particle velocity (residence time). Furthermore, the development of a reliable design tool for moving packed-bed heat exchangers must be validated by predicting experimental results in the operating regime of interest. An experimental system is designed to provide the data necessary for model validation and/or to identify where deficiencies or new constitutive relations are needed.
Proceedings Papers
Proc. ASME. ES2018, ASME 2018 12th International Conference on Energy Sustainability, V001T11A007, June 24–28, 2018
Paper No: ES2018-7504
Abstract
This paper presents an evaluation of alternative particle heat-exchanger designs, including moving packed-bed and fluidized-bed designs, for high-temperature heating of a solar-driven supercritical CO 2 (sCO2) Brayton power cycle. The design requirements for high pressure (≥ 20 MPa) and high temperature (≥ 700 °C) operation associated with sCO2 posed several challenges requiring high-strength materials for piping and/or diffusion bonding for plates. Designs from several vendors for a 100 kW-thermal particle-to-sCO2 heat exchanger were evaluated as part of this project. Cost, heat-transfer coefficient, structural reliability, manufacturability, parasitics and heat losses, scalability, compatibility, erosion and corrosion, transient operation, and inspection ease were considered in the evaluation. An analytical hierarchy process was used to weight and compare the criteria for the different design options. The fluidized-bed design fared the best on heat transfer coefficient, structural reliability, scalability and inspection ease, while the moving packed-bed designs fared the best on cost, parasitics and heat losses, manufacturability, compatibility, erosion and corrosion, and transient operation. A 100 kW t shell-and-plate design was ultimately selected for construction and integration with Sandia’s falling particle receiver system.
Proceedings Papers
Proc. ASME. ES2017, ASME 2017 11th International Conference on Energy Sustainability, V001T05A006, June 26–30, 2017
Paper No: ES2017-3377
Abstract
Particle-based concentrating solar power (CSP) plants have been proposed to increase operating temperature for integration with higher efficiency power cycles using supercritical carbon dioxide (sCO 2 ). The majority of research to date has focused on the development of high-efficiency and high-temperature particle solar thermal receivers. However, system realization will require the design of a particle/sCO 2 heat exchanger as well for delivering thermal energy to the power-cycle working fluid. Recent work has identified moving packed-bed heat exchangers as low-cost alternatives to fluidized-bed heat exchangers, which require additional pumps to fluidize the particles and recuperators to capture the lost heat. However, the reduced heat transfer between the particles and the walls of moving packed-bed heat exchangers, compared to fluidized beds, causes concern with adequately sizing components to meet the thermal duty. Models of moving packed-bed heat exchangers are not currently capable of exploring the design trade-offs in particle size, operating temperature, and residence time. The present work provides a predictive numerical model based on literature correlations capable of designing moving packed-bed heat exchangers as well as investigating the effects of particle size, operating temperature, and particle velocity (residence time). Furthermore, the development of a reliable design tool for moving packed-bed heat exchangers must be validated by predicting experimental results in the operating regime of interest. An experimental system is designed to provide the data necessary for model validation and/or to identify where deficiencies or new constitutive relations are needed.
Proceedings Papers
Proc. ASME. ES2015, Volume 1: Advances in Solar Buildings and Conservation; Climate Control and the Environment; Alternate Fuels and Infrastructure; ARPA-E; Combined Energy Cycles, CHP, CCHP, and Smart Grids; Concentrating Solar Power; Economic, Environmental, and Policy Aspects of Alternate Energy; Geothermal Energy, Harvesting, Ocean Energy and Other Emerging Technologies; Hydrogen Energy Technologies; Low/Zero Emission Power Plants and Carbon Sequestration; Micro and Nano Technology Applications and Materials, V001T05A012, June 28–July 2, 2015
Paper No: ES2015-49409
Abstract
The implementation of efficient and cost effective thermal energy storage in concentrated solar power (CSP) applications is crucial to the wide spread adoption of the technology. The current push to high-temperature receivers enabling the use of advanced power cycles has identified solid particle receivers as a desired technology. A potential way of increasing the specific energy storage of solid particles while simultaneously reducing plant component size is to implement thermochemical energy storage (TCES) through the use of non-stoichiometric perovskite oxides. Materials such as strontium-doped lanthanum cobalt ferrites (LSCF) have been shown to have significant reducibility when cycling temperature and oxygen partial pressure of the environment [1]. The combined reducibility and heat of the oxidation and reduction reactions with the sensible change in temperature of the material leads to specific energy storage values approaching 700 kJ kg −1 . A potential thermochemical energy storage system configuration and modeling strategy is reported on, leading to a parametric study of critical operating parameters on the TCES subsystem performance. For the LSCF material operating between 500 and 900°C with oxygen partial pressure swings from ambient to 0.0001 bar, system efficiencies of 68.6% based on the net thermal energy delivered to the power cycle relative to the incident solar flux on the receiver and auxiliary power requirements, with specific energy storage of 686 kJ kg −1 are predicted. Alternatively, only cycling the temperature between 500 and 900°C without oxygen partial pressure swings results in TCES subsystem efficiencies up to 76.3% with specific energy storage of 533 kJ kg −1 .
Proceedings Papers
Proc. ASME. FUELCELL2014, ASME 2014 12th International Conference on Fuel Cell Science, Engineering and Technology, V001T03A001, June 30–July 2, 2014
Paper No: FuelCell2014-6403
Abstract
One potentially attractive application of solid oxide fuel cells (SOFCs) is for combined heat and power (CHP) in light commercial buildings. An SOFC-based CHP system can be employed to efficiently serve building thermal and electric loads, thereby lowering utility bills and offering many distributed generation benefits. It is often desirable to operate SOFCs in a predominately base load manner from a hardware viewpoint. However, systems in practice will experience some load dynamics during their lifetime and furthermore, optimal economic dispatch of CHP systems frequently recommends a load-following strategy. Thus, the present work is motivated by the need to understand the dynamic response capabilities of SOFC-CHP systems. Part-load performance and dynamic load-following capabilities of a 24 kW planar SOFC system for light commercial applications was investigated through computational modeling. The SOFC and balance-of-plant component models were implemented in gPROMS modeling software. The modeling strategy of each system component and associated transients are discussed. A dynamic SOFC channel-level model, which has been verified against experimental cell data, was integrated with additional balance-of-plant (BOP) component models consisting of a fuel reformer, tail gas combustor, turbomachinery, heat exchangers, and bypass valves. The performance of the system at part-load operation displays increases in electrical efficiency and decreases in CHP efficiency, as well as a more uniform PEN temperature profile. Modeling comparisons between the responses of systems consisting of either dynamic or steady-state BOP component models are reported. A fully dynamic system-level model displays anodic fuel depletion effects and waste heat recovery transients not captured by the steady-state models. The dynamics influence the ability of an SOFC system to load follow indicating when thermal and electric storage may be necessary.