Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
NARROW
Format
Journal
Article Type
Conference Series
Subject Area
Topics
Date
Availability
1-6 of 6
James Yi
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Journal:
Journal of Turbomachinery
Article Type: Research-Article
J. Turbomach. May 2018, 140(5): 051006.
Paper No: TURBO-17-1205
Published Online: April 6, 2018
Abstract
Variable geometry turbine (VGT) has been widely applied in internal combustion engines to improve engine transient response and torque at light load. One of the most popular VGTs is the variable nozzle turbine (VNT) in which the nozzle vanes can be rotated along the pivoting axis and thus the flow passage through the nozzle can be adjusted to match with different engine operating conditions. One disadvantage of the VNT is the turbine efficiency degradation due to the leakage flow in the nozzle endwall clearance, especially at small nozzle open condition. With the purpose to reduce the nozzle leakage flow and to improve turbine stage efficiency, a novel split sliding variable nozzle turbine (SSVNT) has been proposed. In the SSVNT design, the nozzle is divided into two parts: one part is fixed and the other part can move along the partition surface. When sliding the moving vane to large radius position, the nozzle flow passage opens up and the turbine has high flow capacity. When sliding the moving vane to small radius position, the nozzle flow passage closes down and the turbine has low flow capacity. As the fixed vane does not need endwall clearance, the leakage flow through the nozzle can be reduced. Based on calibrated numerical simulation, there is up to 12% turbine stage efficiency improvement with the SSVNT design at small nozzle open condition while maintaining the same performance at large nozzle open condition. The mechanism of efficiency improvement in the SSVNT design has been discussed.
Proceedings Papers
Proc. ASME. GT2017, Volume 2C: Turbomachinery, V02CT44A025, June 26–30, 2017
Paper No: GT2017-64419
Abstract
Variable geometry turbine (VGT) has been widely applied in internal combustion engines to improve the engine transient response and torque at low speed. One of the most popular variable geometry turbine is the variable nozzle turbine (VNT), in which the nozzle vanes can be rotated along the pivoting axis and thus the flow passage through the nozzle can be adjusted to match with different engine operating conditions. One disadvantage of the VNT is the turbine efficiency degradation due to the leakage flow in the nozzle endwall clearance, which is needed to allow the nozzle vanes to rotate without sticking. Especially at small nozzle open condition, there is large loading on the nozzle and high pressure gradient between the nozzle pressure and suction side. Strong leakage flow exists inside the nozzle endwall clearance from pressure side to suction side, leading to large flow loss and turbine stage efficiency degradation. In the present paper, a novel split sliding variable nozzle turbine (SSVNT) has been proposed to reduce the nozzle leakage flow and to improve turbine stage efficiency. The idea is to divide the nozzle into two parts: one part is fixed and the other part can slide along the partition surface. The mechanism of nozzle flow passage variation in SSVNT is different from that of the traditional pivoting VNT. The sliding vane and the fixed vane together form an integrated vane. The flow of the turbine is determined by the passage of the integrated vanes. When moving the sliding vane to large radius position, the nozzle flow passage opens up and the turbine has high flow capacity. When moving the sliding vane towards small radius position, the nozzle flow passage closes down and the turbine has low flow capacity. As the fixed vane doesn’t need endwall clearance, there is no leakage flow inside the fixed vane and the total leakage flow through the integrated vane can be reduced. Based on calibrated numerical modeling, the analysis results showed that there is up to 12% turbine stage efficiency improvement with the SSVNT design at small nozzle open condition while maintaining the same flow capacity and efficiency at large nozzle open condition, compared to the conventional VNT. The mechanism of efficiency improvement in the SSVNT design has also been discussed.
Proceedings Papers
Proc. ASME. GT2016, Volume 8: Microturbines, Turbochargers and Small Turbomachines; Steam Turbines, V008T23A005, June 13–17, 2016
Paper No: GT2016-56342
Abstract
One of critical concerns in a variable geometry turbine (VGT) design program is shock wave generated from nozzle exit at small open conditions with high inlet pressure condition, which may potentially lead to forced response of turbine wheel, even high-cycle fatigue issues and damage of inducer or exducer. Though modern turbine design programs have been well developed, it is difficult to eliminate the shock wave and all the resonant crossings that may occur within the wide operating range of a VGT turbine for automotive applications. This paper presents an option to mitigate intensity of the shock wave induced excitation using grooves on nozzle vane surface before the shock wave. Two kinds of turbines in which nozzle vanes with and without grooves were numerically simulated to obtain a three-dimensional flow field inside the turbine. The predicted performances from steady simulations were compared with test data to validate computational mesh and the unsteady simulation results were analyzed in detail to predict the responses of both shock wave and aerodynamic load acting on turbine blade surface. Compared with the original design, an introduction of grooves on nozzle vane surface mitigates the shock wave while also obviously reduces the amplitudes of alternating aerodynamic load on the turbine blades.
Proceedings Papers
Proc. ASME. GT2014, Volume 1B: Marine; Microturbines, Turbochargers and Small Turbomachines; Steam Turbines, V01BT24A014, June 16–20, 2014
Paper No: GT2014-25999
Abstract
The ultimate goal of an advanced turbocharger development is to have a superior aerodynamic performance while having the turbocharger survive various real world customer applications. Due to the uncertainty of customer usage and driving pattern, the fatigue life prediction is considered one of the most ambiguous analyses in the entire design and analyses processes of the turbocharger. The turbocharger system may have various resonant frequencies, which may be within the range of turbocharger operation for automotive applications. A turbocharger may operate with excessive stresses when running near resonant frequencies. The turbocharger may experience fatigue failures if the accumulative cycles of the turbocharger running across the resonant frequencies exceeds a certain limit. In this study, the authors propose an alternative approach to mitigate this kind of fatigue issues: i.e. engine system approach to improve turbocharger fatigue life via avoiding operating the turbocharger near resonant speeds for extended period of time. A preliminary numerical study was made and presented in this paper to assess the feasibility of such an engine system approach, which is followed by an engine dynamometer test for engine performance sensitivity evaluation when the turbocharger operation condition was adjusted to improve the high cycle fatigue life. The study shows that for a modern diesel engine equipped with electrically controlled variable geometry turbine and EGR for emission control, through the engine calibration and control upgrade, turbocharger operation speed can be altered to stay away from certain critical speeds if necessary. The combined 1D and 3D numerical simulation shows the bandwidth of the turbine “risk zone” near one of the resonant speeds and the potential impact on engine performances if the turbocharger speed has to be shifted out of the “risk zone.”
Journal Articles
Article Type: Research-Article
J. Eng. Gas Turbines Power. July 2014, 136(7): 072601.
Paper No: GTP-14-1017
Published Online: February 20, 2014
Abstract
Heavy EGR required on diesel engines for future emission regulation compliance has posed a big challenge to conventional turbocharger technology for high efficiency and wide operation range. This study, as part of the U.S. Department of Energy sponsored research program, is focused on advanced turbocharger technologies that can improve turbocharger efficiency on customer driving cycles while extending the operation range significantly, compared to a production turbocharger. The production turbocharger for a medium-duty truck application was selected as a donor turbo. Design optimizations were focused on the compressor impeller and turbine wheel. On the compressor side, advanced impeller design with arbitrary surface can improve the efficiency and surge margin at the low end while extending the flow capacity, while a so-called active casing treatment can provide additional operation range extension without compromising compressor efficiency. On the turbine side, mixed flow turbine technology was revisited with renewed interest due to its performance characteristics, i.e., high efficiency at low-speed ratio, relative to the base conventional radial flow turbine, which is relevant to heavy EGR operation for future diesel applications. The engine dynamometer test shows that the advanced turbocharger technology enables over 3% BSFC improvement at part-load as well as full-load condition, in addition to an increase in rated power. The performance improvement demonstrated on an engine dynamometer seems to be more than what would typically be translated from the turbocharger flow bench data, indicating that mixed flow turbine may provide additional performance benefits under pulsed exhaust flow on an internal combustion engine and in the low-speed ratio areas that are typically not covered by steady state flow bench tests.
Proceedings Papers
Proc. ASME. GT2013, Volume 5A: Industrial and Cogeneration; Manufacturing Materials and Metallurgy; Marine; Microturbines, Turbochargers, and Small Turbomachines, V05AT23A006, June 3–7, 2013
Paper No: GT2013-94286
Abstract
Heavy EGR required on diesel engines for future emission regulation compliance has posed a big challenge to conventional turbocharger technology for high efficiency and wide operation range. This study, as part of the U.S. Department of Energy sponsored research program, is focused on advanced turbocharger technologies that can improve turbocharger efficiency on customer driving cycles while extending the operation range significantly, compared to a production turbocharger. The production turbocharger for a medium-duty truck application was selected as a donor turbo. Design optimizations were focused on the compressor impeller and turbine wheel. On the compressor side, advanced impeller design with arbitrary surface can improve the efficiency and surge margin at low end while extending the flow capacity, while a so-called active casing treatment can provide additional operation range extension without compromising compressor efficiency. On the turbine side, mixed flow turbine technology was revisited with renewed interest due to its performance characteristics, i.e. high efficiency at low-speed ratio, relative to the base conventional radial flow turbine, which is relevant to heavy EGR operation for future diesel applications. The engine dynamometer test shows that the advanced turbocharger technology enables over 3% BSFC improvement at part-load as well as full-load condition, in addition to an increase in rated power. The performance improvement demonstrated on engine dynamometer seems to be more than what would typically be translated from the turbocharger flow bench data, indicating that mixed flow turbine may provide additional performance benefits under pulsed exhaust flow on an internal combustion engine and in the low-speed ratio areas that are typically not covered by steady state flow bench tests.