Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
NARROW
Format
Article Type
Conference Series
Subject Area
Topics
Date
Availability
1-1 of 1
Ikay Okafor
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
Experimental Platforms for Validation of Computational Approaches to Simulating Cardiovascular Flows
Neelakantan Saikrishnan, Jean-Pierre Rabbah, Paul Gunning, Ikay Okafor, Arvind Santhanakrishnan, Laoise McNamara, Ajit P. Yoganathan
Proc. ASME. FMD2013, ASME 2013 Conference on Frontiers in Medical Devices: Applications of Computer Modeling and Simulation, V001T10A005, September 11–13, 2013
Paper No: FMD2013-16028
Abstract
This paper describes three different versions of left heart simulators that have been developed at the Cardiovascular Fluid Mechanics Laboratory at Georgia Institute of Technology, specifically designed to provide high fidelity experimental datasets necessary for rigorous validation of computational tools. These systems are capable of simulating physiological and pathological flow, pressure and geometric conditions, and can be investigated using a variety of experimental tools to measure relevant biomechanical quantities. The development of such robust simulators is a critical step in ensuring applicability of patient specific computational tools.