Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
NARROW
Format
Journal
Article Type
Subject Area
Topics
Date
Availability
1-1 of 1
Hideto Okada
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Article Type: Technical Papers
J. Dyn. Sys., Meas., Control. June 2006, 128(2): 287–296.
Published Online: July 19, 2005
Abstract
A technique for driving a flexible system with on-off actuators is presented and experimentally verified. The control system is designed to move the rigid body of a structure a desired distance without causing residual vibration in the flexible modes. The on-off control actions are described by closed-form functions of the system’s natural frequency, damping ratio, actuator force-to-mass ratio, and the desired move distance. Given the closed-form equations, the control sequence can be determined in real time without the need for numerical optimization. Performance measures of the proposed controller such as speed of response, actuator effort, peak transient deflection, and robustness to modeling errors are examined. Experiments performed on a flexible satellite testbed verify the utility of the proposed method.