Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
NARROW
Format
Journal
Article Type
Conference Series
Subject Area
Topics
Date
Availability
1-4 of 4
H. L. Chen
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
Proc. ASME. GT2009, Volume 4: Cycle Innovations; Industrial and Cogeneration; Manufacturing Materials and Metallurgy; Marine, 925-932, June 8–12, 2009
Paper No: GT2009-60260
Abstract
Nondestructive testing using an acousto-ultrasonic technique has been utilized to detect the change of material properties and provide early warning of failure of thermal barrier coating (TBC) systems. Testing was performed on Rene´ N5 and Haynes 230 coupons with an applied NETL-bond coat, as well as on coupons containing both an applied MCrAlY bond coat and 7-YSZ top coat. The coupons were subjected to either cyclic or isothermal testing at 1100°C. Ultrasonic testing was performed before and after thermal testing using piezoelectric sensors with dry contact on the surface of the coatings. Proof-of-concept test results indicated that changes in the properties of the ∼ 40 μ.m bond coat can be detected using the proposed technique. Waveforms generated via Pitch/Catch indicated minor changes within the bond coat applied to Rene´ N5 substrate after 400∼500 hours of cyclic oxidation at 1100°C. In contrast, marked differences in waveforms and travel time reflected significant crack formation and spallation of the bond coat from the Haynes 230 substrate. Finite element analysis (FEA) simulation of the wave propagation on a simplified TBC system with nonlinear effects was conducted. FEA results clearly show detection of a small embedded void incorporated to simulate delamination. Comparisons between experimental measurements and finite element simulations were used to estimate the material properties of the coatings and the substrate.
Journal Articles
Journal:
Journal of Vibration and Acoustics
Article Type: Research Papers
J. Vib. Acoust. June 2008, 130(3): 031002.
Published Online: April 3, 2008
Abstract
Reflection and transmission coefficients of plane waves with oblique incidence to a multilayered system of piezomagnetic and/or piezoelectric materials are investigated in this paper. The general Christoffel equation is derived from the coupled constitutive and balance equations, which is further employed to solve the elastic displacements and electric and magnetic potentials. Based on these solutions, the reflection and transmission coefficients in the corresponding layered structures are subsequently obtained by virtue of the propagator matrix method. Two layered examples are selected to verify and illustrate our solutions. One is the purely elastic layered system composed of aluminum and organic glass materials. The other layered system is composed of the novel magnetoelectroelastic material and the organic glass. Numerical results are presented to demonstrate the variation of the reflection and transmission coefficients with different incident angles, frequencies, and boundary conditions, which could be useful to nondestructive evaluation of this novel material structure based on wave propagations.
Journal Articles
Journal:
Journal of Applied Mechanics
Article Type: Technical Papers
J. Appl. Mech. November 2007, 74(6): 1247–1251.
Published Online: April 23, 2005
Abstract
A novel Bessel function method is proposed to obtain the exact solutions for the free-vibration analysis of rectangular thin plates with three edge conditions: (i) fully simply supported; (ii) fully clamped, and (iii) two opposite edges simply supported and the other two edges clamped. Because Bessel functions satisfy the biharmonic differential equation of solid thin plate, the basic idea of the method is to superpose different Bessel functions to satisfy the edge conditions such that the governing differential equation and the boundary conditions of the thin plate are exactly satisfied. It is shown that the proposed method provides simple, direct, and highly accurate solutions for this family of problems. Examples are demonstrated by calculating the natural frequencies and the vibration modes for a square plate with all edges simply supported and clamped.
Journal Articles
Journal:
Journal of Applied Mechanics
Article Type: Research Papers
J. Appl. Mech. December 1988, 55(4): 887–894.
Published Online: December 1, 1988
Abstract
This article describes the measurement and analysis of plate and soil response under low velocity impact. A free-drop impact system was developed to generate the dynamic loading on the plate free surface. The radial strain of the target plate, the longitudinal wave speed and the acceleration of the sand were measured. The measured wave speed data were then used to evaluate the elastic constants of the sand. An analysis based on linear elastodynamics was developed for transient waves on a thin plate resting on an elastic half space. The contact stresses and the normal displacements of the plate were taken as unknown functions. The contact between the plate and the half space were assumed frictionless. The experimental results of the radial strain at the bottom of the target plate and the acceleration of the sand beneath the center of the target plate were compared with the analytical solution. The arrival time, the duration, and the magnitude have good correlation between the analysis and experiment. The overall results appear good and provide an understanding of the transmission of impact load through the plate, the interaction between the plate and the sand, and the propagation of the load into the sand.